Resonance Sweeping in the Solar System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

J. Henrard

ABSTRACT

In this paper, we would like to show how the Adiabatic Invariant theory and its extension to the problems of capture into resonance can be an effective tool to understand some basic mechanism in the long term evolution of the Solar System. After summarizing the principal results of this theory in Section 1, we describe briefly two applications. The first one concerns the Kirkwood’s Gaps in the Asteroid belt (section 2). We show how a small displacement of the location of the Jovian resonance in the belt can lead to the formation of gaps similar to the ones observed. The second application (section 3) concerns the rotation of Mercury. We analyze a fixed orbit, two dimensional model of the capture of Mercury in a 3/2 resonance. This model has been considered by previous authors. We recover their results in a very simple way with almost no computations. More... »

PAGES

183-192

References to SciGraph publications

  • 1983-06. A second fundamental model for resonance in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1965-06. A Radar Determination of the Rotation of the Planet Mercury in NATURE
  • 1979-04. On the rotation of Mercury in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1965-11. Rotational Period of the Planet Mercury in NATURE
  • 1982-05. Capture into resonance: An extension of the use of adiabatic invariants in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1982. The Adiabatic Invariant: Its Use in Celestial Mechanics in APPLICATIONS OF MODERN DYNAMICS TO CELESTIAL MECHANICS AND ASTRODYNAMICS
  • Book

    TITLE

    Stability of the Solar System and Its Minor Natural and Artificial Bodies

    ISBN

    978-94-010-8883-1
    978-94-009-5398-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-009-5398-7_13

    DOI

    http://dx.doi.org/10.1007/978-94-009-5398-7_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003539899


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "Department of Mathematics, F.N.D.P., Rempart de la Vierge, 8, B-5000, Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "J.", 
            "id": "sg:person.012411554565.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01234306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001324189", 
              "https://doi.org/10.1007/bf01234306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01234306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001324189", 
              "https://doi.org/10.1007/bf01234306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-7793-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001833872", 
              "https://doi.org/10.1007/978-94-009-7793-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139158", 
              "https://doi.org/10.1007/bf01228946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139158", 
              "https://doi.org/10.1007/bf01228946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/208575a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017877812", 
              "https://doi.org/10.1038/208575a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2061240a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020223481", 
              "https://doi.org/10.1038/2061240a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356147", 
              "https://doi.org/10.1007/bf01230222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356147", 
              "https://doi.org/10.1007/bf01230222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(83)90117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037339268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(83)90117-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037339268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/109947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058448557"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985", 
        "datePublishedReg": "1985-01-01", 
        "description": "In this paper, we would like to show how the Adiabatic Invariant theory and its extension to the problems of capture into resonance can be an effective tool to understand some basic mechanism in the long term evolution of the Solar System. After summarizing the principal results of this theory in Section 1, we describe briefly two applications. The first one concerns the Kirkwood\u2019s Gaps in the Asteroid belt (section 2). We show how a small displacement of the location of the Jovian resonance in the belt can lead to the formation of gaps similar to the ones observed. The second application (section 3) concerns the rotation of Mercury. We analyze a fixed orbit, two dimensional model of the capture of Mercury in a 3/2 resonance. This model has been considered by previous authors. We recover their results in a very simple way with almost no computations.", 
        "editor": [
          {
            "familyName": "Szebehely", 
            "givenName": "Victor G.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-009-5398-7_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-8883-1", 
            "978-94-009-5398-7"
          ], 
          "name": "Stability of the Solar System and Its Minor Natural and Artificial Bodies", 
          "type": "Book"
        }, 
        "name": "Resonance Sweeping in the Solar System", 
        "pagination": "183-192", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003539899"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-009-5398-7_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "10dceddcb069166cf248fd5d0af94f2a0590bcc92062a4217a338b310040a94c"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-009-5398-7_13", 
          "https://app.dimensions.ai/details/publication/pub.1003539899"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91444_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-94-009-5398-7_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5398-7_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5398-7_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5398-7_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5398-7_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-009-5398-7_13 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndc75a98039fb4476aa5854cdd819e70e
    4 schema:citation sg:pub.10.1007/978-94-009-7793-8_10
    5 sg:pub.10.1007/bf01228946
    6 sg:pub.10.1007/bf01230222
    7 sg:pub.10.1007/bf01234306
    8 sg:pub.10.1038/2061240a0
    9 sg:pub.10.1038/208575a0
    10 https://doi.org/10.1016/0019-1035(83)90117-3
    11 https://doi.org/10.1086/109947
    12 schema:datePublished 1985
    13 schema:datePublishedReg 1985-01-01
    14 schema:description In this paper, we would like to show how the Adiabatic Invariant theory and its extension to the problems of capture into resonance can be an effective tool to understand some basic mechanism in the long term evolution of the Solar System. After summarizing the principal results of this theory in Section 1, we describe briefly two applications. The first one concerns the Kirkwood’s Gaps in the Asteroid belt (section 2). We show how a small displacement of the location of the Jovian resonance in the belt can lead to the formation of gaps similar to the ones observed. The second application (section 3) concerns the rotation of Mercury. We analyze a fixed orbit, two dimensional model of the capture of Mercury in a 3/2 resonance. This model has been considered by previous authors. We recover their results in a very simple way with almost no computations.
    15 schema:editor Neb5223a41fd34513b93dad37ee69fcee
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N05d12ed5c69941b1bb236fac0a9af9d3
    20 schema:name Resonance Sweeping in the Solar System
    21 schema:pagination 183-192
    22 schema:productId N2295ba0a7a4f4cf1a41e907f90bdb6b5
    23 N364d927280e64432b1510d40f3929352
    24 N4dddb1b5fd524d60a7a0f2806fc89962
    25 schema:publisher Nb17096075c2b4d88ac928b25b451070b
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003539899
    27 https://doi.org/10.1007/978-94-009-5398-7_13
    28 schema:sdDatePublished 2019-04-16T09:45
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nd5d14363362f4404807145bb6e0ed2cc
    31 schema:url https://link.springer.com/10.1007%2F978-94-009-5398-7_13
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N05d12ed5c69941b1bb236fac0a9af9d3 schema:isbn 978-94-009-5398-7
    36 978-94-010-8883-1
    37 schema:name Stability of the Solar System and Its Minor Natural and Artificial Bodies
    38 rdf:type schema:Book
    39 N2295ba0a7a4f4cf1a41e907f90bdb6b5 schema:name dimensions_id
    40 schema:value pub.1003539899
    41 rdf:type schema:PropertyValue
    42 N364d927280e64432b1510d40f3929352 schema:name readcube_id
    43 schema:value 10dceddcb069166cf248fd5d0af94f2a0590bcc92062a4217a338b310040a94c
    44 rdf:type schema:PropertyValue
    45 N4dddb1b5fd524d60a7a0f2806fc89962 schema:name doi
    46 schema:value 10.1007/978-94-009-5398-7_13
    47 rdf:type schema:PropertyValue
    48 Nb17096075c2b4d88ac928b25b451070b schema:location Dordrecht
    49 schema:name Springer Netherlands
    50 rdf:type schema:Organisation
    51 Nb2ad604eb09e47399091b1b6c039247f schema:familyName Szebehely
    52 schema:givenName Victor G.
    53 rdf:type schema:Person
    54 Nd5d14363362f4404807145bb6e0ed2cc schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 Ndc75a98039fb4476aa5854cdd819e70e rdf:first sg:person.012411554565.81
    57 rdf:rest rdf:nil
    58 Neb5223a41fd34513b93dad37ee69fcee rdf:first Nb2ad604eb09e47399091b1b6c039247f
    59 rdf:rest rdf:nil
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    67 schema:familyName Henrard
    68 schema:givenName J.
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
    70 rdf:type schema:Person
    71 sg:pub.10.1007/978-94-009-7793-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001833872
    72 https://doi.org/10.1007/978-94-009-7793-8_10
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf01228946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139158
    75 https://doi.org/10.1007/bf01228946
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01230222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356147
    78 https://doi.org/10.1007/bf01230222
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01234306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001324189
    81 https://doi.org/10.1007/bf01234306
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1038/2061240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020223481
    84 https://doi.org/10.1038/2061240a0
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1038/208575a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017877812
    87 https://doi.org/10.1038/208575a0
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/0019-1035(83)90117-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339268
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1086/109947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448557
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    94 schema:name Department of Mathematics, F.N.D.P., Rempart de la Vierge, 8, B-5000, Namur, Belgium
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...