The Ideal Resonance Problem a Comparison of Two Formula Solutions I View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

A. H. Jupp , A. Y. Abdulla

ABSTRACT

Garfinkel’s solution of the Ideal Resonance problem derived from a Bohlin-von Zeipel procedure, and Jupp’s solution, using Poincaré’s action and angle variables and an application of Lie series expansions, are compared. Two specific Hamiltonians are chosen for the comparison and both solutions are compared with the numerical solutions obtained from direct integrations of the equations of motion. It is found that in deep resonance the second-mentioned solution is generally more accurate, while in the classical limit the first solution gives excellent agreement with the numerical integrations.This article represents a summary of a much more extensive programme of research, the complete results of which will be published in a future article. More... »

PAGES

411-423

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-5331-4_34

DOI

http://dx.doi.org/10.1007/978-94-009-5331-4_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028194994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D.A.M.T.P, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "D.A.M.T.P, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jupp", 
        "givenName": "A. H.", 
        "id": "sg:person.07420122720.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdulla", 
        "givenName": "A. Y.", 
        "id": "sg:person.012220574315.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220574315.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "Garfinkel\u2019s solution of the Ideal Resonance problem derived from a Bohlin-von Zeipel procedure, and Jupp\u2019s solution, using Poincar\u00e9\u2019s action and angle variables and an application of Lie series expansions, are compared. Two specific Hamiltonians are chosen for the comparison and both solutions are compared with the numerical solutions obtained from direct integrations of the equations of motion. It is found that in deep resonance the second-mentioned solution is generally more accurate, while in the classical limit the first solution gives excellent agreement with the numerical integrations.This article represents a summary of a much more extensive programme of research, the complete results of which will be published in a future article.", 
    "editor": [
      {
        "familyName": "Duncombe", 
        "givenName": "R. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dvorak", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Message", 
        "givenName": "P. J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-5331-4_34", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8854-1", 
        "978-94-009-5331-4"
      ], 
      "name": "The Stability of Planetary Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "resonance problem", 
      "equations of motion", 
      "numerical solution", 
      "direct integration", 
      "excellent agreement", 
      "solution", 
      "numerical integration", 
      "first solution", 
      "series expansion", 
      "extensive program", 
      "integration", 
      "motion", 
      "applications", 
      "equations", 
      "solution I", 
      "comparison", 
      "problem", 
      "agreement", 
      "limit", 
      "complete results", 
      "results", 
      "angle variables", 
      "expansion", 
      "resonance", 
      "deep resonance", 
      "procedure", 
      "research", 
      "variables", 
      "article", 
      "future articles", 
      "action", 
      "program", 
      "summary", 
      "Ideal Resonance Problem", 
      "Lie series expansion", 
      "classical limit", 
      "specific Hamiltonian", 
      "Hamiltonian", 
      "Garfinkel\u2019s solution", 
      "Bohlin-von Zeipel procedure", 
      "Zeipel procedure", 
      "Jupp\u2019s solution", 
      "Poincar\u00e9\u2019s action", 
      "Formula Solutions I"
    ], 
    "name": "The Ideal Resonance Problem a Comparison of Two Formula Solutions I", 
    "pagination": "411-423", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028194994"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-5331-4_34"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-5331-4_34", 
      "https://app.dimensions.ai/details/publication/pub.1028194994"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_289.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-5331-4_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5331-4_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5331-4_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5331-4_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-5331-4_34'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-5331-4_34 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N4ad8e847d4364d7e94bfd84507a059a7
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description Garfinkel’s solution of the Ideal Resonance problem derived from a Bohlin-von Zeipel procedure, and Jupp’s solution, using Poincaré’s action and angle variables and an application of Lie series expansions, are compared. Two specific Hamiltonians are chosen for the comparison and both solutions are compared with the numerical solutions obtained from direct integrations of the equations of motion. It is found that in deep resonance the second-mentioned solution is generally more accurate, while in the classical limit the first solution gives excellent agreement with the numerical integrations.This article represents a summary of a much more extensive programme of research, the complete results of which will be published in a future article.
7 schema:editor N2fb73d58a1c6420288756f6ddfbf0df3
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0d67ea9df92741d9af4ebf00cdb25c9a
12 schema:keywords Bohlin-von Zeipel procedure
13 Formula Solutions I
14 Garfinkel’s solution
15 Hamiltonian
16 Ideal Resonance Problem
17 Jupp’s solution
18 Lie series expansion
19 Poincaré’s action
20 Zeipel procedure
21 action
22 agreement
23 angle variables
24 applications
25 article
26 classical limit
27 comparison
28 complete results
29 deep resonance
30 direct integration
31 equations
32 equations of motion
33 excellent agreement
34 expansion
35 extensive program
36 first solution
37 future articles
38 integration
39 limit
40 motion
41 numerical integration
42 numerical solution
43 problem
44 procedure
45 program
46 research
47 resonance
48 resonance problem
49 results
50 series expansion
51 solution
52 solution I
53 specific Hamiltonian
54 summary
55 variables
56 schema:name The Ideal Resonance Problem a Comparison of Two Formula Solutions I
57 schema:pagination 411-423
58 schema:productId N35922a39a9674823aebeaab39a2d8345
59 N982e041397dd4103b446c0d86812750f
60 schema:publisher Ne237e7a7891c4e0e94f61b82415eaa87
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028194994
62 https://doi.org/10.1007/978-94-009-5331-4_34
63 schema:sdDatePublished 2022-01-01T19:17
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nd3d5775f992f4fbd95497f07fcf9202e
66 schema:url https://doi.org/10.1007/978-94-009-5331-4_34
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N0d67ea9df92741d9af4ebf00cdb25c9a schema:isbn 978-94-009-5331-4
71 978-94-010-8854-1
72 schema:name The Stability of Planetary Systems
73 rdf:type schema:Book
74 N170fed63acc94231ad175026c1971e3f schema:familyName Dvorak
75 schema:givenName R.
76 rdf:type schema:Person
77 N2fb73d58a1c6420288756f6ddfbf0df3 rdf:first Nf7c11ba46b874b059f72d888306caece
78 rdf:rest Nfe215edbec5a4c86842020d201d776f0
79 N35922a39a9674823aebeaab39a2d8345 schema:name dimensions_id
80 schema:value pub.1028194994
81 rdf:type schema:PropertyValue
82 N4ad8e847d4364d7e94bfd84507a059a7 rdf:first sg:person.07420122720.37
83 rdf:rest Ne1ab139fde684d789543d81892713b95
84 N50bd1eb2fba8435898b2ac0a609e6c39 rdf:first N8175fc4a9a994a04931823c70faf592c
85 rdf:rest rdf:nil
86 N8175fc4a9a994a04931823c70faf592c schema:familyName Message
87 schema:givenName P. J.
88 rdf:type schema:Person
89 N982e041397dd4103b446c0d86812750f schema:name doi
90 schema:value 10.1007/978-94-009-5331-4_34
91 rdf:type schema:PropertyValue
92 Nd3d5775f992f4fbd95497f07fcf9202e schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ne1ab139fde684d789543d81892713b95 rdf:first sg:person.012220574315.12
95 rdf:rest rdf:nil
96 Ne237e7a7891c4e0e94f61b82415eaa87 schema:name Springer Nature
97 rdf:type schema:Organisation
98 Nf7c11ba46b874b059f72d888306caece schema:familyName Duncombe
99 schema:givenName R. L.
100 rdf:type schema:Person
101 Nfe215edbec5a4c86842020d201d776f0 rdf:first N170fed63acc94231ad175026c1971e3f
102 rdf:rest N50bd1eb2fba8435898b2ac0a609e6c39
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
107 schema:name Numerical and Computational Mathematics
108 rdf:type schema:DefinedTerm
109 sg:person.012220574315.12 schema:affiliation grid-institutes:None
110 schema:familyName Abdulla
111 schema:givenName A. Y.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220574315.12
113 rdf:type schema:Person
114 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
115 schema:familyName Jupp
116 schema:givenName A. H.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
118 rdf:type schema:Person
119 grid-institutes:None schema:alternateName Dept. of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq
120 schema:name Dept. of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq
121 rdf:type schema:Organization
122 grid-institutes:grid.10025.36 schema:alternateName D.A.M.T.P, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England
123 schema:name D.A.M.T.P, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...