The Bayesian Framework for Inference in Flood Frequency Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

G. Kuczera

ABSTRACT

One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information. More... »

PAGES

45-61

Book

TITLE

Application of Frequency and Risk in Water Resources

ISBN

978-94-010-8254-9
978-94-009-3955-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4

DOI

http://dx.doi.org/10.1007/978-94-009-3955-4_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049199160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Department of Civil Engineering and Surveying, The University of Newcastle, 2308, Shortland, N.S.W, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuczera", 
        "givenName": "G.", 
        "id": "sg:person.0624142152.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624142152.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jz065i007p02143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i004p00533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008625729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i006p00839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008751487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010373047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010373047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg021i003p00699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014643402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i002p00511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015085828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr006i006p01649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018784695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i006p00815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019113111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr008i001p00033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019411621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr018i002p00306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020135234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr017i005p01505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr017i004p00833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr016i006p01121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028232928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr014i006p01105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030245921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i003p00405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030401124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr004i006p01361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr012i006p01109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034709784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i003p00821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i005p01343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036550513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr009i006p01534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041096844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr021i009p01421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047445376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(83)90088-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051590881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(83)90088-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051590881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177703729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2284231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069860656"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information.", 
    "editor": [
      {
        "familyName": "Singh", 
        "givenName": "Vijay P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-3955-4_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8254-9", 
        "978-94-009-3955-4"
      ], 
      "name": "Application of Frequency and Risk in Water Resources", 
      "type": "Book"
    }, 
    "name": "The Bayesian Framework for Inference in Flood Frequency Analysis", 
    "pagination": "45-61", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049199160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-3955-4_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea5fe8d0ec0120fe49de338063d79324e3fb069a882616aaa85943ce5ae52192"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-3955-4_4", 
      "https://app.dimensions.ai/details/publication/pub.1049199160"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56173_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-3955-4_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-3955-4_4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N6b23149daeb14dfb999087aee22c1875
4 schema:citation https://doi.org/10.1016/0022-1694(82)90068-3
5 https://doi.org/10.1016/0022-1694(83)90088-4
6 https://doi.org/10.1029/jz065i007p02143
7 https://doi.org/10.1029/rg021i003p00699
8 https://doi.org/10.1029/wr004i006p01361
9 https://doi.org/10.1029/wr006i006p01649
10 https://doi.org/10.1029/wr008i001p00033
11 https://doi.org/10.1029/wr009i006p01534
12 https://doi.org/10.1029/wr011i003p00405
13 https://doi.org/10.1029/wr011i004p00533
14 https://doi.org/10.1029/wr011i006p00815
15 https://doi.org/10.1029/wr011i006p00839
16 https://doi.org/10.1029/wr012i006p01109
17 https://doi.org/10.1029/wr014i006p01105
18 https://doi.org/10.1029/wr016i006p01121
19 https://doi.org/10.1029/wr017i004p00833
20 https://doi.org/10.1029/wr017i005p01505
21 https://doi.org/10.1029/wr018i002p00306
22 https://doi.org/10.1029/wr019i002p00511
23 https://doi.org/10.1029/wr019i003p00821
24 https://doi.org/10.1029/wr019i005p01343
25 https://doi.org/10.1029/wr021i009p01421
26 https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043)
27 https://doi.org/10.1214/aoms/1177703729
28 https://doi.org/10.2307/2284231
29 schema:datePublished 1987
30 schema:datePublishedReg 1987-01-01
31 schema:description One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information.
32 schema:editor Ne683194bdc8e4dbeb4f60425765ee5be
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N1b7ab77aa0c245c2819331aa47ddd2f6
37 schema:name The Bayesian Framework for Inference in Flood Frequency Analysis
38 schema:pagination 45-61
39 schema:productId N04b21fff8c7a4ddfa8604dd39eb852a5
40 N243c298a94c842ba92c7c5545a01644e
41 Nb8ee4e1fdd164249bdd95374b56a2d17
42 schema:publisher N513d461c1a474fd4aab2a0adfb6b5177
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049199160
44 https://doi.org/10.1007/978-94-009-3955-4_4
45 schema:sdDatePublished 2019-04-16T09:56
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N7dbf1d74106f4620adea077a46a3ed91
48 schema:url https://link.springer.com/10.1007%2F978-94-009-3955-4_4
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N04b21fff8c7a4ddfa8604dd39eb852a5 schema:name readcube_id
53 schema:value ea5fe8d0ec0120fe49de338063d79324e3fb069a882616aaa85943ce5ae52192
54 rdf:type schema:PropertyValue
55 N1b7ab77aa0c245c2819331aa47ddd2f6 schema:isbn 978-94-009-3955-4
56 978-94-010-8254-9
57 schema:name Application of Frequency and Risk in Water Resources
58 rdf:type schema:Book
59 N243c298a94c842ba92c7c5545a01644e schema:name dimensions_id
60 schema:value pub.1049199160
61 rdf:type schema:PropertyValue
62 N513d461c1a474fd4aab2a0adfb6b5177 schema:location Dordrecht
63 schema:name Springer Netherlands
64 rdf:type schema:Organisation
65 N6b23149daeb14dfb999087aee22c1875 rdf:first sg:person.0624142152.28
66 rdf:rest rdf:nil
67 N7dbf1d74106f4620adea077a46a3ed91 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nb8ee4e1fdd164249bdd95374b56a2d17 schema:name doi
70 schema:value 10.1007/978-94-009-3955-4_4
71 rdf:type schema:PropertyValue
72 Ne297c659c3ef40e7ab728c44b7ecc95e schema:familyName Singh
73 schema:givenName Vijay P.
74 rdf:type schema:Person
75 Ne683194bdc8e4dbeb4f60425765ee5be rdf:first Ne297c659c3ef40e7ab728c44b7ecc95e
76 rdf:rest rdf:nil
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:person.0624142152.28 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
84 schema:familyName Kuczera
85 schema:givenName G.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624142152.28
87 rdf:type schema:Person
88 https://doi.org/10.1016/0022-1694(82)90068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010373047
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0022-1694(83)90088-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051590881
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1029/jz065i007p02143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003069366
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1029/rg021i003p00699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014643402
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1029/wr004i006p01361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930939
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1029/wr006i006p01649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018784695
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1029/wr008i001p00033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019411621
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1029/wr009i006p01534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096844
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1029/wr011i003p00405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030401124
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1029/wr011i004p00533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008625729
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1029/wr011i006p00815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019113111
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1029/wr011i006p00839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008751487
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1029/wr012i006p01109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034709784
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1029/wr014i006p01105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030245921
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1029/wr016i006p01121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028232928
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/wr017i004p00833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027261529
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/wr017i005p01505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021753891
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/wr018i002p00306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020135234
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/wr019i002p00511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015085828
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/wr019i003p00821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891040
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/wr019i005p01343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036550513
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/wr021i009p01421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047445376
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588921
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1214/aoms/1177703729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400225
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2307/2284231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069860656
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
139 schema:name Department of Civil Engineering and Surveying, The University of Newcastle, 2308, Shortland, N.S.W, Australia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...