The Bayesian Framework for Inference in Flood Frequency Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

G. Kuczera

ABSTRACT

One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information. More... »

PAGES

45-61

Book

TITLE

Application of Frequency and Risk in Water Resources

ISBN

978-94-010-8254-9
978-94-009-3955-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4

DOI

http://dx.doi.org/10.1007/978-94-009-3955-4_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049199160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Department of Civil Engineering and Surveying, The University of Newcastle, 2308, Shortland, N.S.W, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuczera", 
        "givenName": "G.", 
        "id": "sg:person.0624142152.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624142152.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jz065i007p02143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003069366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i004p00533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008625729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i006p00839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008751487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010373047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(82)90068-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010373047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg021i003p00699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014643402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i002p00511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015085828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr006i006p01649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018784695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i006p00815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019113111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr008i001p00033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019411621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr018i002p00306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020135234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr017i005p01505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021753891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr017i004p00833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027261529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr016i006p01121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028232928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr014i006p01105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030245921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i003p00405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030401124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr004i006p01361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033930939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr012i006p01109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034709784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i003p00821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035891040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr019i005p01343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036550513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr009i006p01534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041096844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr021i009p01421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047445376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(83)90088-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051590881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(83)90088-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051590881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177703729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2284231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069860656"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information.", 
    "editor": [
      {
        "familyName": "Singh", 
        "givenName": "Vijay P.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-3955-4_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8254-9", 
        "978-94-009-3955-4"
      ], 
      "name": "Application of Frequency and Risk in Water Resources", 
      "type": "Book"
    }, 
    "name": "The Bayesian Framework for Inference in Flood Frequency Analysis", 
    "pagination": "45-61", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049199160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-3955-4_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ea5fe8d0ec0120fe49de338063d79324e3fb069a882616aaa85943ce5ae52192"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-3955-4_4", 
      "https://app.dimensions.ai/details/publication/pub.1049199160"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56173_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-3955-4_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3955-4_4'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-3955-4_4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N309eed1d3e474348bc4328c59a291b25
4 schema:citation https://doi.org/10.1016/0022-1694(82)90068-3
5 https://doi.org/10.1016/0022-1694(83)90088-4
6 https://doi.org/10.1029/jz065i007p02143
7 https://doi.org/10.1029/rg021i003p00699
8 https://doi.org/10.1029/wr004i006p01361
9 https://doi.org/10.1029/wr006i006p01649
10 https://doi.org/10.1029/wr008i001p00033
11 https://doi.org/10.1029/wr009i006p01534
12 https://doi.org/10.1029/wr011i003p00405
13 https://doi.org/10.1029/wr011i004p00533
14 https://doi.org/10.1029/wr011i006p00815
15 https://doi.org/10.1029/wr011i006p00839
16 https://doi.org/10.1029/wr012i006p01109
17 https://doi.org/10.1029/wr014i006p01105
18 https://doi.org/10.1029/wr016i006p01121
19 https://doi.org/10.1029/wr017i004p00833
20 https://doi.org/10.1029/wr017i005p01505
21 https://doi.org/10.1029/wr018i002p00306
22 https://doi.org/10.1029/wr019i002p00511
23 https://doi.org/10.1029/wr019i003p00821
24 https://doi.org/10.1029/wr019i005p01343
25 https://doi.org/10.1029/wr021i009p01421
26 https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043)
27 https://doi.org/10.1214/aoms/1177703729
28 https://doi.org/10.2307/2284231
29 schema:datePublished 1987
30 schema:datePublishedReg 1987-01-01
31 schema:description One of the major problems facing flood frequency analysis is that predictions typically require extrapolation beyond observed flood experience. Such extrapolations are very much affected by model and parameter uncertainty. This review reflects on the contributions that Bayesian theory has made, and can possibly make, in managing this uncertainty. Some of the issues examined from a Bayesian perspective include the choice of a flood distribution, the exploitation of gauged and historic site information possibly affected by measurement error, development of regional models and the pooling of site and regional information.
32 schema:editor N02347e53e6824909a287347a4cbec233
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nac355b6fbf8348359273e390f0ef9bd4
37 schema:name The Bayesian Framework for Inference in Flood Frequency Analysis
38 schema:pagination 45-61
39 schema:productId N7bd8882b0dcc4dbe9896b18067e77eb0
40 Ndd059d7a94b54d69bd9e649fdc0269c9
41 Nffb0bf00df4a4369b80ae501c44e33d1
42 schema:publisher N53e101b6975e41c7a7b413b622069e12
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049199160
44 https://doi.org/10.1007/978-94-009-3955-4_4
45 schema:sdDatePublished 2019-04-16T09:56
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ncab6435ff95143388a8189646626a0ef
48 schema:url https://link.springer.com/10.1007%2F978-94-009-3955-4_4
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N02347e53e6824909a287347a4cbec233 rdf:first N4b857fe299ba4f7582f0bcf712a57f43
53 rdf:rest rdf:nil
54 N309eed1d3e474348bc4328c59a291b25 rdf:first sg:person.0624142152.28
55 rdf:rest rdf:nil
56 N4b857fe299ba4f7582f0bcf712a57f43 schema:familyName Singh
57 schema:givenName Vijay P.
58 rdf:type schema:Person
59 N53e101b6975e41c7a7b413b622069e12 schema:location Dordrecht
60 schema:name Springer Netherlands
61 rdf:type schema:Organisation
62 N7bd8882b0dcc4dbe9896b18067e77eb0 schema:name dimensions_id
63 schema:value pub.1049199160
64 rdf:type schema:PropertyValue
65 Nac355b6fbf8348359273e390f0ef9bd4 schema:isbn 978-94-009-3955-4
66 978-94-010-8254-9
67 schema:name Application of Frequency and Risk in Water Resources
68 rdf:type schema:Book
69 Ncab6435ff95143388a8189646626a0ef schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ndd059d7a94b54d69bd9e649fdc0269c9 schema:name readcube_id
72 schema:value ea5fe8d0ec0120fe49de338063d79324e3fb069a882616aaa85943ce5ae52192
73 rdf:type schema:PropertyValue
74 Nffb0bf00df4a4369b80ae501c44e33d1 schema:name doi
75 schema:value 10.1007/978-94-009-3955-4_4
76 rdf:type schema:PropertyValue
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
81 schema:name Statistics
82 rdf:type schema:DefinedTerm
83 sg:person.0624142152.28 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
84 schema:familyName Kuczera
85 schema:givenName G.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624142152.28
87 rdf:type schema:Person
88 https://doi.org/10.1016/0022-1694(82)90068-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010373047
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0022-1694(83)90088-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051590881
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1029/jz065i007p02143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003069366
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1029/rg021i003p00699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014643402
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1029/wr004i006p01361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033930939
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1029/wr006i006p01649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018784695
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1029/wr008i001p00033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019411621
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1029/wr009i006p01534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041096844
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1029/wr011i003p00405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030401124
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1029/wr011i004p00533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008625729
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1029/wr011i006p00815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019113111
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1029/wr011i006p00839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008751487
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1029/wr012i006p01109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034709784
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1029/wr014i006p01105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030245921
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1029/wr016i006p01121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028232928
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1029/wr017i004p00833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027261529
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1029/wr017i005p01505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021753891
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1029/wr018i002p00306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020135234
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/wr019i002p00511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015085828
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/wr019i003p00821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035891040
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/wr019i005p01343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036550513
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/wr021i009p01421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047445376
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1061/(asce)0733-9429(1985)111:7(1043) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588921
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1214/aoms/1177703729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400225
135 rdf:type schema:CreativeWork
136 https://doi.org/10.2307/2284231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069860656
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
139 schema:name Department of Civil Engineering and Surveying, The University of Newcastle, 2308, Shortland, N.S.W, Australia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...