CIS Structured Solar Cells Using Polysilicon View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

O. P. Agnihotri , R. Thangaraj , S. P. Singh , P. Raja Ram , A. K. Saxena

ABSTRACT

During the past few years, CIS solar cells have been considered a viable alternative to thermally diffused p-n junctions for use with polycrystalline silicon. Diffused junctions on polycrystalline silicon substrates pose serious problems due to enhanced diffusion along the grain boundaries, introducing current leakage paths resulting in low shunt resistance and recombination loss along the grain boundaries. In CIS structures, a thin insulating layer is grown between the base polycrystalline substrate and the top metal or semiconducting layer. The fabrication of these devices involves the low temperature processing steps at which the life time degradation problems particularly when polycrystalline substrates are used, do not occur [1-8]. Oxygen diffusion through the thin metal or conducting oxide has been identified as the major degradation mechanism. The state-of-art of CIS solar cell technology is incomplete as compared to the work on thermal diffusion technology and the major problem areas needing attention are; control of the interfacial layer, work function variations in the deposited oxide semiconductor, incomplete coverage of the polycrystalline silicon surface by the thin metals due to grain boundary misorientations and the charge instability of the insulator layer. More... »

PAGES

101-106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-3941-7_5

DOI

http://dx.doi.org/10.1007/978-94-009-3941-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001998591


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agnihotri", 
        "givenName": "O. P.", 
        "id": "sg:person.016431342457.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431342457.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thangaraj", 
        "givenName": "R.", 
        "id": "sg:person.014122300542.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014122300542.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "S. P.", 
        "id": "sg:person.014515720424.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515720424.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ram", 
        "givenName": "P. Raja", 
        "id": "sg:person.010073446123.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073446123.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saxena", 
        "givenName": "A. K.", 
        "id": "sg:person.011530016424.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530016424.24"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "During the past few years, CIS solar cells have been considered a viable alternative to thermally diffused p-n junctions for use with polycrystalline silicon. Diffused junctions on polycrystalline silicon substrates pose serious problems due to enhanced diffusion along the grain boundaries, introducing current leakage paths resulting in low shunt resistance and recombination loss along the grain boundaries. In CIS structures, a thin insulating layer is grown between the base polycrystalline substrate and the top metal or semiconducting layer. The fabrication of these devices involves the low temperature processing steps at which the life time degradation problems particularly when polycrystalline substrates are used, do not occur [1-8]. Oxygen diffusion through the thin metal or conducting oxide has been identified as the major degradation mechanism. The state-of-art of CIS solar cell technology is incomplete as compared to the work on thermal diffusion technology and the major problem areas needing attention are; control of the interfacial layer, work function variations in the deposited oxide semiconductor, incomplete coverage of the polycrystalline silicon surface by the thin metals due to grain boundary misorientations and the charge instability of the insulator layer.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-3941-7_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8248-8", 
        "978-94-009-3941-7"
      ], 
      "name": "Physics and Technology of Solar Energy", 
      "type": "Book"
    }, 
    "keywords": [
      "solar cells", 
      "thin metal", 
      "grain boundaries", 
      "structured solar cells", 
      "polycrystalline substrates", 
      "solar cell technology", 
      "thermal diffusion technology", 
      "CIS solar cells", 
      "polycrystalline silicon substrates", 
      "polycrystalline silicon surfaces", 
      "major degradation mechanism", 
      "low shunt resistance", 
      "grain boundary misorientation", 
      "current leakage paths", 
      "thin insulating layer", 
      "oxide semiconductors", 
      "semiconducting layer", 
      "interfacial layer", 
      "insulator layer", 
      "polycrystalline silicon", 
      "silicon substrate", 
      "insulating layer", 
      "boundary misorientation", 
      "leakage paths", 
      "recombination losses", 
      "CIS structures", 
      "top metal", 
      "diffusion technology", 
      "shunt resistance", 
      "silicon surface", 
      "enhanced diffusion", 
      "degradation mechanism", 
      "cell technology", 
      "processing steps", 
      "layer", 
      "degradation problem", 
      "work function variation", 
      "charge instability", 
      "metals", 
      "substrate", 
      "polysilicon", 
      "diffusion", 
      "fabrication", 
      "major problem areas", 
      "silicon", 
      "technology", 
      "boundaries", 
      "semiconductors", 
      "misorientation", 
      "viable alternative", 
      "devices", 
      "function variation", 
      "oxide", 
      "serious problem", 
      "surface", 
      "junctions", 
      "resistance", 
      "instability", 
      "problem areas", 
      "structure", 
      "problem", 
      "work", 
      "path", 
      "step", 
      "alternative", 
      "variation", 
      "incomplete coverage", 
      "area", 
      "control", 
      "loss", 
      "use", 
      "mechanism", 
      "coverage", 
      "attention", 
      "state", 
      "art", 
      "cells", 
      "years", 
      "base polycrystalline substrate", 
      "low temperature processing steps", 
      "temperature processing steps", 
      "life time degradation problems", 
      "time degradation problems", 
      "CIS solar cell technology", 
      "CIS Structured Solar Cells"
    ], 
    "name": "CIS Structured Solar Cells Using Polysilicon", 
    "pagination": "101-106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001998591"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-3941-7_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-3941-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1001998591"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_204.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-3941-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3941-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3941-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3941-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3941-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      113 URIs      103 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-3941-7_5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0906
5 anzsrc-for:0912
6 schema:author N18c76b932bfb4113bbb3bed6b180fe6e
7 schema:datePublished 1987
8 schema:datePublishedReg 1987-01-01
9 schema:description During the past few years, CIS solar cells have been considered a viable alternative to thermally diffused p-n junctions for use with polycrystalline silicon. Diffused junctions on polycrystalline silicon substrates pose serious problems due to enhanced diffusion along the grain boundaries, introducing current leakage paths resulting in low shunt resistance and recombination loss along the grain boundaries. In CIS structures, a thin insulating layer is grown between the base polycrystalline substrate and the top metal or semiconducting layer. The fabrication of these devices involves the low temperature processing steps at which the life time degradation problems particularly when polycrystalline substrates are used, do not occur [1-8]. Oxygen diffusion through the thin metal or conducting oxide has been identified as the major degradation mechanism. The state-of-art of CIS solar cell technology is incomplete as compared to the work on thermal diffusion technology and the major problem areas needing attention are; control of the interfacial layer, work function variations in the deposited oxide semiconductor, incomplete coverage of the polycrystalline silicon surface by the thin metals due to grain boundary misorientations and the charge instability of the insulator layer.
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N84abb8b8e417407fafe8969d979c7402
14 schema:keywords CIS Structured Solar Cells
15 CIS solar cell technology
16 CIS solar cells
17 CIS structures
18 alternative
19 area
20 art
21 attention
22 base polycrystalline substrate
23 boundaries
24 boundary misorientation
25 cell technology
26 cells
27 charge instability
28 control
29 coverage
30 current leakage paths
31 degradation mechanism
32 degradation problem
33 devices
34 diffusion
35 diffusion technology
36 enhanced diffusion
37 fabrication
38 function variation
39 grain boundaries
40 grain boundary misorientation
41 incomplete coverage
42 instability
43 insulating layer
44 insulator layer
45 interfacial layer
46 junctions
47 layer
48 leakage paths
49 life time degradation problems
50 loss
51 low shunt resistance
52 low temperature processing steps
53 major degradation mechanism
54 major problem areas
55 mechanism
56 metals
57 misorientation
58 oxide
59 oxide semiconductors
60 path
61 polycrystalline silicon
62 polycrystalline silicon substrates
63 polycrystalline silicon surfaces
64 polycrystalline substrates
65 polysilicon
66 problem
67 problem areas
68 processing steps
69 recombination losses
70 resistance
71 semiconducting layer
72 semiconductors
73 serious problem
74 shunt resistance
75 silicon
76 silicon substrate
77 silicon surface
78 solar cell technology
79 solar cells
80 state
81 step
82 structure
83 structured solar cells
84 substrate
85 surface
86 technology
87 temperature processing steps
88 thermal diffusion technology
89 thin insulating layer
90 thin metal
91 time degradation problems
92 top metal
93 use
94 variation
95 viable alternative
96 work
97 work function variation
98 years
99 schema:name CIS Structured Solar Cells Using Polysilicon
100 schema:pagination 101-106
101 schema:productId N1f1b015702f645dbbb44b75c51bd70b6
102 N3899ebd14f084991a2eb24bc37b55c3d
103 schema:publisher N34da8996114d4034bde2b88a04132ce7
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001998591
105 https://doi.org/10.1007/978-94-009-3941-7_5
106 schema:sdDatePublished 2021-11-01T18:50
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Na6701712d8654414b33b6f0688d64911
109 schema:url https://doi.org/10.1007/978-94-009-3941-7_5
110 sgo:license sg:explorer/license/
111 sgo:sdDataset chapters
112 rdf:type schema:Chapter
113 N0b3f0ca146c14c308b33aae347b4fff0 rdf:first sg:person.010073446123.29
114 rdf:rest Nb13f9a2ee8cc416a9db68223e890c0fc
115 N18c76b932bfb4113bbb3bed6b180fe6e rdf:first sg:person.016431342457.74
116 rdf:rest Nbaf6222a908e41149cb7828c6bb1c3fc
117 N1f1b015702f645dbbb44b75c51bd70b6 schema:name dimensions_id
118 schema:value pub.1001998591
119 rdf:type schema:PropertyValue
120 N34da8996114d4034bde2b88a04132ce7 schema:name Springer Nature
121 rdf:type schema:Organisation
122 N3899ebd14f084991a2eb24bc37b55c3d schema:name doi
123 schema:value 10.1007/978-94-009-3941-7_5
124 rdf:type schema:PropertyValue
125 N3f0368fc3d104d1ebf3690b4ad77fb5f rdf:first sg:person.014515720424.77
126 rdf:rest N0b3f0ca146c14c308b33aae347b4fff0
127 N84abb8b8e417407fafe8969d979c7402 schema:isbn 978-94-009-3941-7
128 978-94-010-8248-8
129 schema:name Physics and Technology of Solar Energy
130 rdf:type schema:Book
131 Na6701712d8654414b33b6f0688d64911 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nb13f9a2ee8cc416a9db68223e890c0fc rdf:first sg:person.011530016424.24
134 rdf:rest rdf:nil
135 Nbaf6222a908e41149cb7828c6bb1c3fc rdf:first sg:person.014122300542.41
136 rdf:rest N3f0368fc3d104d1ebf3690b4ad77fb5f
137 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
138 schema:name Chemical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
141 schema:name Physical Chemistry (incl. Structural)
142 rdf:type schema:DefinedTerm
143 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
144 schema:name Engineering
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
147 schema:name Electrical and Electronic Engineering
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
150 schema:name Materials Engineering
151 rdf:type schema:DefinedTerm
152 sg:person.010073446123.29 schema:affiliation grid-institutes:grid.417967.a
153 schema:familyName Ram
154 schema:givenName P. Raja
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073446123.29
156 rdf:type schema:Person
157 sg:person.011530016424.24 schema:affiliation grid-institutes:grid.417967.a
158 schema:familyName Saxena
159 schema:givenName A. K.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530016424.24
161 rdf:type schema:Person
162 sg:person.014122300542.41 schema:affiliation grid-institutes:grid.417967.a
163 schema:familyName Thangaraj
164 schema:givenName R.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014122300542.41
166 rdf:type schema:Person
167 sg:person.014515720424.77 schema:affiliation grid-institutes:grid.417967.a
168 schema:familyName Singh
169 schema:givenName S. P.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515720424.77
171 rdf:type schema:Person
172 sg:person.016431342457.74 schema:affiliation grid-institutes:grid.417967.a
173 schema:familyName Agnihotri
174 schema:givenName O. P.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016431342457.74
176 rdf:type schema:Person
177 grid-institutes:grid.417967.a schema:alternateName Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India
178 schema:name Semiconductor Engineering Laboratory Department of Physics, Indian Institute of Technology, 110 016, Hauz Khas, New Delhi, India
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...