Conditional Recovery Estimation Through Probability Kriging — Theory and Practice View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

Jeff Sullivan

ABSTRACT

The probability kriging technique is an improvement on the distribution free indicator kriging technique for obtaining conditional recoverable reserves. Probability kriging is similar to indicator kriging in that both techniques utilize indicator data and no assumption concerning the shape of the conditional distribution is made. Indicator kriging however does not utilize some easily obtainable information which causes, in certain cases, the indicator kriging estimator to be smoothed, conditionally biased, and in general a poor local estimator. The cases where indicator kriging performs poorly will be identified and it will be shown that by including additional information, through the probability kriging estimator, that the quality of the estimator will be improved. The probability kriging technique is then tested on a gold deposit and the results are presented. More... »

PAGES

365-384

References to SciGraph publications

Book

TITLE

Geostatistics for Natural Resources Characterization

ISBN

978-94-010-8157-3
978-94-009-3699-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-3699-7_22

DOI

http://dx.doi.org/10.1007/978-94-009-3699-7_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010762596


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Applied Earth Sciences, Stanford University School of Earth Sciences, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sullivan", 
        "givenName": "Jeff", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-3699-7_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050704907", 
          "https://doi.org/10.1007/978-94-009-3699-7_19"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "The probability kriging technique is an improvement on the distribution free indicator kriging technique for obtaining conditional recoverable reserves. Probability kriging is similar to indicator kriging in that both techniques utilize indicator data and no assumption concerning the shape of the conditional distribution is made. Indicator kriging however does not utilize some easily obtainable information which causes, in certain cases, the indicator kriging estimator to be smoothed, conditionally biased, and in general a poor local estimator. The cases where indicator kriging performs poorly will be identified and it will be shown that by including additional information, through the probability kriging estimator, that the quality of the estimator will be improved. The probability kriging technique is then tested on a gold deposit and the results are presented.", 
    "editor": [
      {
        "familyName": "Verly", 
        "givenName": "Georges", 
        "type": "Person"
      }, 
      {
        "familyName": "David", 
        "givenName": "Michel", 
        "type": "Person"
      }, 
      {
        "familyName": "Journel", 
        "givenName": "Andre G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Marechal", 
        "givenName": "Alain", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-3699-7_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-8157-3", 
        "978-94-009-3699-7"
      ], 
      "name": "Geostatistics for Natural Resources Characterization", 
      "type": "Book"
    }, 
    "name": "Conditional Recovery Estimation Through Probability Kriging \u2014 Theory and Practice", 
    "pagination": "365-384", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-3699-7_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3345e61a0539ad6c9ba9683bd3b75de3c2f23241d1ad9320458b416b49aea489"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010762596"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-3699-7_22", 
      "https://app.dimensions.ai/details/publication/pub.1010762596"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000018.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-009-3699-7_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3699-7_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3699-7_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3699-7_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3699-7_22'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-3699-7_22 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nef7c19e069d94a1a9662e0267d0690b9
4 schema:citation sg:pub.10.1007/978-94-009-3699-7_19
5 schema:datePublished 1984
6 schema:datePublishedReg 1984-01-01
7 schema:description The probability kriging technique is an improvement on the distribution free indicator kriging technique for obtaining conditional recoverable reserves. Probability kriging is similar to indicator kriging in that both techniques utilize indicator data and no assumption concerning the shape of the conditional distribution is made. Indicator kriging however does not utilize some easily obtainable information which causes, in certain cases, the indicator kriging estimator to be smoothed, conditionally biased, and in general a poor local estimator. The cases where indicator kriging performs poorly will be identified and it will be shown that by including additional information, through the probability kriging estimator, that the quality of the estimator will be improved. The probability kriging technique is then tested on a gold deposit and the results are presented.
8 schema:editor N66e7492fdc1b4f8e8b65fdff824ee5a1
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ne396666b29ab4c8991863dd75cf9c7bf
13 schema:name Conditional Recovery Estimation Through Probability Kriging — Theory and Practice
14 schema:pagination 365-384
15 schema:productId N04fbfcb061444408bce27f997d83307d
16 N2a7b2c0f1d2e48ffbc46d90c3f018f49
17 N7d7b14a0163548d48f022e3e63ec242e
18 schema:publisher N0aebbf46e96a447bb7857e29230f3a71
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010762596
20 https://doi.org/10.1007/978-94-009-3699-7_22
21 schema:sdDatePublished 2019-04-15T16:58
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N03bc54d64e3e41a49331f8acccbc6525
24 schema:url http://link.springer.com/10.1007/978-94-009-3699-7_22
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N03bc54d64e3e41a49331f8acccbc6525 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N04fbfcb061444408bce27f997d83307d schema:name readcube_id
31 schema:value 3345e61a0539ad6c9ba9683bd3b75de3c2f23241d1ad9320458b416b49aea489
32 rdf:type schema:PropertyValue
33 N0aebbf46e96a447bb7857e29230f3a71 schema:location Dordrecht
34 schema:name Springer Netherlands
35 rdf:type schema:Organisation
36 N2a7b2c0f1d2e48ffbc46d90c3f018f49 schema:name doi
37 schema:value 10.1007/978-94-009-3699-7_22
38 rdf:type schema:PropertyValue
39 N4947ab3a650a4c47b9757fc747d9d5ca schema:familyName Journel
40 schema:givenName Andre G.
41 rdf:type schema:Person
42 N4c24d16f55a14a8d9b6fb3eb04d14c3b schema:familyName David
43 schema:givenName Michel
44 rdf:type schema:Person
45 N65ca590e5de245bf8d03e2b543610b03 rdf:first N4c24d16f55a14a8d9b6fb3eb04d14c3b
46 rdf:rest Ne4d5e33c4de443198333b80a480e9f46
47 N66e7492fdc1b4f8e8b65fdff824ee5a1 rdf:first N99218b0d6b4c471a8afc10e0b61aa7fe
48 rdf:rest N65ca590e5de245bf8d03e2b543610b03
49 N7d7b14a0163548d48f022e3e63ec242e schema:name dimensions_id
50 schema:value pub.1010762596
51 rdf:type schema:PropertyValue
52 N87e7121f0e704a69a106406c80eebb86 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
53 schema:familyName Sullivan
54 schema:givenName Jeff
55 rdf:type schema:Person
56 N97871caf86094a0aa47ca5304610ccae rdf:first Nef9c568776834ba99cced5ce204bbab4
57 rdf:rest rdf:nil
58 N99218b0d6b4c471a8afc10e0b61aa7fe schema:familyName Verly
59 schema:givenName Georges
60 rdf:type schema:Person
61 Ne396666b29ab4c8991863dd75cf9c7bf schema:isbn 978-94-009-3699-7
62 978-94-010-8157-3
63 schema:name Geostatistics for Natural Resources Characterization
64 rdf:type schema:Book
65 Ne4d5e33c4de443198333b80a480e9f46 rdf:first N4947ab3a650a4c47b9757fc747d9d5ca
66 rdf:rest N97871caf86094a0aa47ca5304610ccae
67 Nef7c19e069d94a1a9662e0267d0690b9 rdf:first N87e7121f0e704a69a106406c80eebb86
68 rdf:rest rdf:nil
69 Nef9c568776834ba99cced5ce204bbab4 schema:familyName Marechal
70 schema:givenName Alain
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information Systems
77 rdf:type schema:DefinedTerm
78 sg:pub.10.1007/978-94-009-3699-7_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050704907
79 https://doi.org/10.1007/978-94-009-3699-7_19
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
82 schema:name Department of Applied Earth Sciences, Stanford University School of Earth Sciences, Stanford, California, USA
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...