A package for the statistical analysis of visual fields View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

Anders Heijl , Georg Lindgren , Jonny Olsson

ABSTRACT

We have devised a package for the statistical analysis of computerized visual fields. It is based on a new mathematical model of the normal visual field and intended to facilitate interpretation of single fields and to illustrate changes over time in consecutive threshold fields. Single field analyses include maps showing pointwise total and pattern deviations from the age-corrected normal reference field. These maps are displayed both numerically, in dB, and as noninterpolated greyscaled probability maps illustrating the statistical significance of measured deviations. These probability maps help emphasize shallow, but significant, depressions in the paracentral field while frequently occurring false positive deviations occurring in the midperiphery are de-emphasized. Visual field indices, summarizing the deviations of height (Mean Deviation) and shape (Pattern Standard Deviation and Corrected Pattern Standard Deviation) of the measured field are weighted according to the normal variance among healthy individuals and printed out together with level of statistical significance. For follow-up the programme contains several different options. These range from an Overview format where threshold printouts and probability maps from several tests are printed in reduced size, but without any reduction of data, on a single sheet of paper, to a box plot format where the development of the field is shown with an intermediate degree of data reduction and a format employing a high degree of data reduction: graphs over visual field indices over time. If five or more tests are available a linear regression analysis of Mean Deviation is automatically performed. The programme will become available in the Humphrey Field Analyzer. More... »

PAGES

153-168

Book

TITLE

Seventh International Visual Field Symposium, Amsterdam, September 1986

ISBN

978-94-010-7993-8
978-94-009-3325-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-3325-5_23

DOI

http://dx.doi.org/10.1007/978-94-009-3325-5_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016118418


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Malm\u00f6 General Hospital, S-214 01, Malm\u00f6, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.411843.b", 
          "name": [
            "Department of Ophthalmology, Malm\u00f6 General Hospital, S-214 01, Malm\u00f6, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heijl", 
        "givenName": "Anders", 
        "id": "sg:person.01042356506.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042356506.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgren", 
        "givenName": "Georg", 
        "id": "sg:person.012274436413.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olsson", 
        "givenName": "Jonny", 
        "id": "sg:person.01237061656.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237061656.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "We have devised a package for the statistical analysis of computerized visual fields. It is based on a new mathematical model of the normal visual field and intended to facilitate interpretation of single fields and to illustrate changes over time in consecutive threshold fields. Single field analyses include maps showing pointwise total and pattern deviations from the age-corrected normal reference field. These maps are displayed both numerically, in dB, and as noninterpolated greyscaled probability maps illustrating the statistical significance of measured deviations. These probability maps help emphasize shallow, but significant, depressions in the paracentral field while frequently occurring false positive deviations occurring in the midperiphery are de-emphasized. Visual field indices, summarizing the deviations of height (Mean Deviation) and shape (Pattern Standard Deviation and Corrected Pattern Standard Deviation) of the measured field are weighted according to the normal variance among healthy individuals and printed out together with level of statistical significance. For follow-up the programme contains several different options. These range from an Overview format where threshold printouts and probability maps from several tests are printed in reduced size, but without any reduction of data, on a single sheet of paper, to a box plot format where the development of the field is shown with an intermediate degree of data reduction and a format employing a high degree of data reduction: graphs over visual field indices over time. If five or more tests are available a linear regression analysis of Mean Deviation is automatically performed. The programme will become available in the Humphrey Field Analyzer.", 
    "editor": [
      {
        "familyName": "Greve", 
        "givenName": "E. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Heijl", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-3325-5_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7993-8", 
        "978-94-009-3325-5"
      ], 
      "name": "Seventh International Visual Field Symposium, Amsterdam, September 1986", 
      "type": "Book"
    }, 
    "keywords": [
      "new mathematical model", 
      "mathematical model", 
      "statistical analysis", 
      "overview format", 
      "deviation of height", 
      "reduction of data", 
      "probability maps", 
      "data reduction", 
      "paracentral field", 
      "computerized visual field", 
      "package", 
      "maps", 
      "field analysis", 
      "field", 
      "deviation", 
      "statistical significance", 
      "reference field", 
      "plot format", 
      "model", 
      "normal variance", 
      "reduced size", 
      "analysis", 
      "variance", 
      "single field", 
      "different options", 
      "time", 
      "degree", 
      "interpretation", 
      "mean deviation", 
      "linear regression analysis", 
      "shape", 
      "pattern deviation", 
      "data", 
      "reduction", 
      "index", 
      "format", 
      "regression analysis", 
      "more tests", 
      "program", 
      "field indices", 
      "size", 
      "high degree", 
      "test", 
      "intermediate degree", 
      "options", 
      "significance", 
      "printouts", 
      "development", 
      "visual field indices", 
      "single sheet", 
      "sheets", 
      "levels", 
      "height", 
      "analyzer", 
      "changes", 
      "individuals", 
      "threshold field", 
      "positive deviation", 
      "Field Analyzer", 
      "midperiphery", 
      "normal visual fields", 
      "Humphrey Field Analyzer", 
      "visual field", 
      "total", 
      "healthy individuals", 
      "paper", 
      "depression", 
      "consecutive threshold fields", 
      "Single field analyses", 
      "pointwise total", 
      "age-corrected normal reference field", 
      "normal reference field", 
      "false positive deviations", 
      "threshold printouts", 
      "box plot format"
    ], 
    "name": "A package for the statistical analysis of visual fields", 
    "pagination": "153-168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016118418"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-3325-5_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-3325-5_23", 
      "https://app.dimensions.ai/details/publication/pub.1016118418"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_367.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-3325-5_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3325-5_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3325-5_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3325-5_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-3325-5_23'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      101 URIs      94 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-3325-5_23 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfd0a0b0d72fe4114bb778e02c94c0c08
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description We have devised a package for the statistical analysis of computerized visual fields. It is based on a new mathematical model of the normal visual field and intended to facilitate interpretation of single fields and to illustrate changes over time in consecutive threshold fields. Single field analyses include maps showing pointwise total and pattern deviations from the age-corrected normal reference field. These maps are displayed both numerically, in dB, and as noninterpolated greyscaled probability maps illustrating the statistical significance of measured deviations. These probability maps help emphasize shallow, but significant, depressions in the paracentral field while frequently occurring false positive deviations occurring in the midperiphery are de-emphasized. Visual field indices, summarizing the deviations of height (Mean Deviation) and shape (Pattern Standard Deviation and Corrected Pattern Standard Deviation) of the measured field are weighted according to the normal variance among healthy individuals and printed out together with level of statistical significance. For follow-up the programme contains several different options. These range from an Overview format where threshold printouts and probability maps from several tests are printed in reduced size, but without any reduction of data, on a single sheet of paper, to a box plot format where the development of the field is shown with an intermediate degree of data reduction and a format employing a high degree of data reduction: graphs over visual field indices over time. If five or more tests are available a linear regression analysis of Mean Deviation is automatically performed. The programme will become available in the Humphrey Field Analyzer.
7 schema:editor N71ee7664b1ed47cf804ebd236709e443
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na05855142f2841a38780f835b7966955
12 schema:keywords Field Analyzer
13 Humphrey Field Analyzer
14 Single field analyses
15 age-corrected normal reference field
16 analysis
17 analyzer
18 box plot format
19 changes
20 computerized visual field
21 consecutive threshold fields
22 data
23 data reduction
24 degree
25 depression
26 development
27 deviation
28 deviation of height
29 different options
30 false positive deviations
31 field
32 field analysis
33 field indices
34 format
35 healthy individuals
36 height
37 high degree
38 index
39 individuals
40 intermediate degree
41 interpretation
42 levels
43 linear regression analysis
44 maps
45 mathematical model
46 mean deviation
47 midperiphery
48 model
49 more tests
50 new mathematical model
51 normal reference field
52 normal variance
53 normal visual fields
54 options
55 overview format
56 package
57 paper
58 paracentral field
59 pattern deviation
60 plot format
61 pointwise total
62 positive deviation
63 printouts
64 probability maps
65 program
66 reduced size
67 reduction
68 reduction of data
69 reference field
70 regression analysis
71 shape
72 sheets
73 significance
74 single field
75 single sheet
76 size
77 statistical analysis
78 statistical significance
79 test
80 threshold field
81 threshold printouts
82 time
83 total
84 variance
85 visual field
86 visual field indices
87 schema:name A package for the statistical analysis of visual fields
88 schema:pagination 153-168
89 schema:productId N5d635f7eac2a4c35b8edecd2b383370c
90 Ne6aaa5daef22489698caac6f8600eb93
91 schema:publisher N5fbd82d47f4147d4a134ebc7ad527ceb
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016118418
93 https://doi.org/10.1007/978-94-009-3325-5_23
94 schema:sdDatePublished 2022-01-01T19:21
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N8bf4276292a241b097814cb4d0f8b3a3
97 schema:url https://doi.org/10.1007/978-94-009-3325-5_23
98 sgo:license sg:explorer/license/
99 sgo:sdDataset chapters
100 rdf:type schema:Chapter
101 N5d635f7eac2a4c35b8edecd2b383370c schema:name dimensions_id
102 schema:value pub.1016118418
103 rdf:type schema:PropertyValue
104 N5fbd82d47f4147d4a134ebc7ad527ceb schema:name Springer Nature
105 rdf:type schema:Organisation
106 N6ac41eab57404bf4859ced4f3909adec rdf:first sg:person.01237061656.70
107 rdf:rest rdf:nil
108 N71ee7664b1ed47cf804ebd236709e443 rdf:first Nf184ea8a274442f791f7290723c06201
109 rdf:rest N9c9a0293a30344a8952baf18e1c3cd42
110 N8bf4276292a241b097814cb4d0f8b3a3 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N9c9a0293a30344a8952baf18e1c3cd42 rdf:first Nfe40e90419454e9db0e43ddba6d89ee0
113 rdf:rest rdf:nil
114 Na05855142f2841a38780f835b7966955 schema:isbn 978-94-009-3325-5
115 978-94-010-7993-8
116 schema:name Seventh International Visual Field Symposium, Amsterdam, September 1986
117 rdf:type schema:Book
118 Ne6aaa5daef22489698caac6f8600eb93 schema:name doi
119 schema:value 10.1007/978-94-009-3325-5_23
120 rdf:type schema:PropertyValue
121 Nf184ea8a274442f791f7290723c06201 schema:familyName Greve
122 schema:givenName E. L.
123 rdf:type schema:Person
124 Nfbe750fdbb1b4e67975b6184295e5724 rdf:first sg:person.012274436413.00
125 rdf:rest N6ac41eab57404bf4859ced4f3909adec
126 Nfd0a0b0d72fe4114bb778e02c94c0c08 rdf:first sg:person.01042356506.18
127 rdf:rest Nfbe750fdbb1b4e67975b6184295e5724
128 Nfe40e90419454e9db0e43ddba6d89ee0 schema:familyName Heijl
129 schema:givenName A.
130 rdf:type schema:Person
131 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
132 schema:name Mathematical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
135 schema:name Statistics
136 rdf:type schema:DefinedTerm
137 sg:person.01042356506.18 schema:affiliation grid-institutes:grid.411843.b
138 schema:familyName Heijl
139 schema:givenName Anders
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042356506.18
141 rdf:type schema:Person
142 sg:person.012274436413.00 schema:affiliation grid-institutes:None
143 schema:familyName Lindgren
144 schema:givenName Georg
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00
146 rdf:type schema:Person
147 sg:person.01237061656.70 schema:affiliation grid-institutes:None
148 schema:familyName Olsson
149 schema:givenName Jonny
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237061656.70
151 rdf:type schema:Person
152 grid-institutes:None schema:alternateName Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden
153 schema:name Department of Mathematical Statistics, Box 118, S 221 00, Lund, Sweden
154 rdf:type schema:Organization
155 grid-institutes:grid.411843.b schema:alternateName Department of Ophthalmology, Malmö General Hospital, S-214 01, Malmö, Sweden
156 schema:name Department of Ophthalmology, Malmö General Hospital, S-214 01, Malmö, Sweden
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...