A Perturbative Method for Problems with Two Critical Arguments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Jacques Henrard

ABSTRACT

Resonance in the restricted three body problem usually lead by averaging to one-degree of freedom Hamiltonian systems described by the Hamiltonian Ho (p,P). Consideration of a further degree of freedom, such as a fourth body or the ellipticity of the orbit of the perturbing body, may introduce a second critical argument (q) in the averaged system which will then be described by the Hamiltonian H = Ho (p,P) + ε H1 (p,q,P,Q). In a recent paper (Henrard-Lemaître, 1986) we have developed a semi-numerical perturbation method to deal with such systems even when the “unperturbed” Hamiltonian HO possesses critical curves in the region of interest. This method is based upon the fact that the solution of the Hamilton-Jacobi equation by which one usually introduce the action-angle variables do have a geometrical interpretation. The action variable is an area and the angular variable is a normalized time along the orbit. These quantities can be computed numerically even for fairly complex “unperturbed” systems. This method is used by A. Lemaître to unravel the complexity of the motion of asteroids in the Jovian resonance 2/1 taking into account the eccentricity of Jupiter. More... »

PAGES

85-85

References to SciGraph publications

  • 1986-09. A perturbation method for problems with two critical arguments in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Book

    TITLE

    The Few Body Problem

    ISBN

    978-94-010-7813-9
    978-94-009-2917-3

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-009-2917-3_13

    DOI

    http://dx.doi.org/10.1007/978-94-009-2917-3_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004497946


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "Department of Mathematics, F.N.D.P., Rempart de la Vierge, 8, B-5000\u00a0Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "Jacques", 
            "id": "sg:person.012411554565.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01234307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045953884", 
              "https://doi.org/10.1007/bf01234307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01234307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045953884", 
              "https://doi.org/10.1007/bf01234307"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988", 
        "datePublishedReg": "1988-01-01", 
        "description": "Resonance in the restricted three body problem usually lead by averaging to one-degree of freedom Hamiltonian systems described by the Hamiltonian Ho (p,P). Consideration of a further degree of freedom, such as a fourth body or the ellipticity of the orbit of the perturbing body, may introduce a second critical argument (q) in the averaged system which will then be described by the Hamiltonian H = Ho (p,P) + \u03b5 H1 (p,q,P,Q). In a recent paper (Henrard-Lema\u00eetre, 1986) we have developed a semi-numerical perturbation method to deal with such systems even when the \u201cunperturbed\u201d Hamiltonian HO possesses critical curves in the region of interest. This method is based upon the fact that the solution of the Hamilton-Jacobi equation by which one usually introduce the action-angle variables do have a geometrical interpretation. The action variable is an area and the angular variable is a normalized time along the orbit. These quantities can be computed numerically even for fairly complex \u201cunperturbed\u201d systems. This method is used by A. Lema\u00eetre to unravel the complexity of the motion of asteroids in the Jovian resonance 2/1 taking into account the eccentricity of Jupiter.", 
        "editor": [
          {
            "familyName": "Valtonen", 
            "givenName": "M. J.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-009-2917-3_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-7813-9", 
            "978-94-009-2917-3"
          ], 
          "name": "The Few Body Problem", 
          "type": "Book"
        }, 
        "name": "A Perturbative Method for Problems with Two Critical Arguments", 
        "pagination": "85-85", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-009-2917-3_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "156ea3513f40622ec8e5e0c15b8610fad0f320d5ff50b3af14a343445595cf2a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004497946"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-009-2917-3_13", 
          "https://app.dimensions.ai/details/publication/pub.1004497946"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000245.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-009-2917-3_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2917-3_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2917-3_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2917-3_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2917-3_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    69 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-009-2917-3_13 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0ffa98434a7d41719a0835d8e0fab0fc
    4 schema:citation sg:pub.10.1007/bf01234307
    5 schema:datePublished 1988
    6 schema:datePublishedReg 1988-01-01
    7 schema:description Resonance in the restricted three body problem usually lead by averaging to one-degree of freedom Hamiltonian systems described by the Hamiltonian Ho (p,P). Consideration of a further degree of freedom, such as a fourth body or the ellipticity of the orbit of the perturbing body, may introduce a second critical argument (q) in the averaged system which will then be described by the Hamiltonian H = Ho (p,P) + ε H1 (p,q,P,Q). In a recent paper (Henrard-Lemaître, 1986) we have developed a semi-numerical perturbation method to deal with such systems even when the “unperturbed” Hamiltonian HO possesses critical curves in the region of interest. This method is based upon the fact that the solution of the Hamilton-Jacobi equation by which one usually introduce the action-angle variables do have a geometrical interpretation. The action variable is an area and the angular variable is a normalized time along the orbit. These quantities can be computed numerically even for fairly complex “unperturbed” systems. This method is used by A. Lemaître to unravel the complexity of the motion of asteroids in the Jovian resonance 2/1 taking into account the eccentricity of Jupiter.
    8 schema:editor N7cc7df12447747aaa2eccec36fcfb987
    9 schema:genre chapter
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N33592e6733ea4b189cfe7caac569c62f
    13 schema:name A Perturbative Method for Problems with Two Critical Arguments
    14 schema:pagination 85-85
    15 schema:productId N75d6c2aa71b640c19b44b387b384d34c
    16 N959912dc80774f679ca80e66ef0274d1
    17 N9d2a5324dde44ef9b08a8d42d3091212
    18 schema:publisher N536c6d1fc46b4512ac4932229419806d
    19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004497946
    20 https://doi.org/10.1007/978-94-009-2917-3_13
    21 schema:sdDatePublished 2019-04-15T13:25
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher Nb422b8a6000e49fba42d1c4d06116fa7
    24 schema:url http://link.springer.com/10.1007/978-94-009-2917-3_13
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset chapters
    27 rdf:type schema:Chapter
    28 N0ffa98434a7d41719a0835d8e0fab0fc rdf:first sg:person.012411554565.81
    29 rdf:rest rdf:nil
    30 N33592e6733ea4b189cfe7caac569c62f schema:isbn 978-94-009-2917-3
    31 978-94-010-7813-9
    32 schema:name The Few Body Problem
    33 rdf:type schema:Book
    34 N536c6d1fc46b4512ac4932229419806d schema:location Dordrecht
    35 schema:name Springer Netherlands
    36 rdf:type schema:Organisation
    37 N75d6c2aa71b640c19b44b387b384d34c schema:name readcube_id
    38 schema:value 156ea3513f40622ec8e5e0c15b8610fad0f320d5ff50b3af14a343445595cf2a
    39 rdf:type schema:PropertyValue
    40 N7cc7df12447747aaa2eccec36fcfb987 rdf:first N97b6039d711d4749930c13a44f7ddb1c
    41 rdf:rest rdf:nil
    42 N959912dc80774f679ca80e66ef0274d1 schema:name dimensions_id
    43 schema:value pub.1004497946
    44 rdf:type schema:PropertyValue
    45 N97b6039d711d4749930c13a44f7ddb1c schema:familyName Valtonen
    46 schema:givenName M. J.
    47 rdf:type schema:Person
    48 N9d2a5324dde44ef9b08a8d42d3091212 schema:name doi
    49 schema:value 10.1007/978-94-009-2917-3_13
    50 rdf:type schema:PropertyValue
    51 Nb422b8a6000e49fba42d1c4d06116fa7 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Information and Computing Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Artificial Intelligence and Image Processing
    58 rdf:type schema:DefinedTerm
    59 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    60 schema:familyName Henrard
    61 schema:givenName Jacques
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf01234307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045953884
    65 https://doi.org/10.1007/bf01234307
    66 rdf:type schema:CreativeWork
    67 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    68 schema:name Department of Mathematics, F.N.D.P., Rempart de la Vierge, 8, B-5000 Namur, Belgium
    69 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...