Scale Invariant Spatial and Temporal Fluctuations in Complex Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Per Bak , Chao Tang , Kurt Wiesenfeld

ABSTRACT

Dynamical systems with many degrees of freedom can evolve (or be driven) into a stationary state exhibiting scale invariant spatial and/or temporal fluctuations. General arguments are supported by numerical simulations of simple models. Scaling exponents are defined and calculated. We suggest that the concept presented here has wide potential applications, including fractal patterns, 1/f noise, randomly pinned surfaces or interfaces, glasses, and earthquakes. Some of the applications are discussed in detail. More... »

PAGES

329-335

Book

TITLE

Random Fluctuations and Pattern Growth: Experiments and Models

ISBN

978-0-7923-0073-1
978-94-009-2653-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-2653-0_47

DOI

http://dx.doi.org/10.1007/978-94-009-2653-0_47

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011882047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory, 11973, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Brookhaven National Laboratory, 11973, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "Per", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory, 11973, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Brookhaven National Laboratory, 11973, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Chao", 
        "id": "sg:person.0641171460.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641171460.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory, 11973, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Brookhaven National Laboratory, 11973, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiesenfeld", 
        "givenName": "Kurt", 
        "id": "sg:person.012412304707.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412304707.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "Dynamical systems with many degrees of freedom can evolve (or be driven) into a stationary state exhibiting scale invariant spatial and/or temporal fluctuations. General arguments are supported by numerical simulations of simple models. Scaling exponents are defined and calculated. We suggest that the concept presented here has wide potential applications, including fractal patterns, 1/f noise, randomly pinned surfaces or interfaces, glasses, and earthquakes. Some of the applications are discussed in detail.", 
    "editor": [
      {
        "familyName": "Stanley", 
        "givenName": "H. Eugene", 
        "type": "Person"
      }, 
      {
        "familyName": "Ostrowsky", 
        "givenName": "Nicole", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-2653-0_47", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-0073-1", 
        "978-94-009-2653-0"
      ], 
      "name": "Random Fluctuations and Pattern Growth: Experiments and Models", 
      "type": "Book"
    }, 
    "keywords": [
      "numerical simulations", 
      "wide potential applications", 
      "degrees of freedom", 
      "potential applications", 
      "temporal fluctuations", 
      "applications", 
      "simple model", 
      "glass", 
      "interface", 
      "simulations", 
      "surface", 
      "fluctuations", 
      "scaling exponents", 
      "system", 
      "earthquakes", 
      "noise", 
      "complex systems", 
      "fractal patterns", 
      "dynamical systems", 
      "Spatial", 
      "stationary state", 
      "exponent", 
      "scale invariant", 
      "detail", 
      "model", 
      "freedom", 
      "concept", 
      "degree", 
      "state", 
      "invariants", 
      "patterns", 
      "general argument", 
      "argument", 
      "Invariant Spatial"
    ], 
    "name": "Scale Invariant Spatial and Temporal Fluctuations in Complex Systems", 
    "pagination": "329-335", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011882047"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-2653-0_47"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-2653-0_47", 
      "https://app.dimensions.ai/details/publication/pub.1011882047"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_364.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-2653-0_47"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2653-0_47'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2653-0_47'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2653-0_47'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2653-0_47'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-2653-0_47 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N30619d7f8885459ea929c5b2ba4e0213
4 schema:datePublished 1988
5 schema:datePublishedReg 1988-01-01
6 schema:description Dynamical systems with many degrees of freedom can evolve (or be driven) into a stationary state exhibiting scale invariant spatial and/or temporal fluctuations. General arguments are supported by numerical simulations of simple models. Scaling exponents are defined and calculated. We suggest that the concept presented here has wide potential applications, including fractal patterns, 1/f noise, randomly pinned surfaces or interfaces, glasses, and earthquakes. Some of the applications are discussed in detail.
7 schema:editor N7842719a3b7e4461b0abe39db165cbaf
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd14a1339321f442fb818c7b9824cef6a
12 schema:keywords Invariant Spatial
13 Spatial
14 applications
15 argument
16 complex systems
17 concept
18 degree
19 degrees of freedom
20 detail
21 dynamical systems
22 earthquakes
23 exponent
24 fluctuations
25 fractal patterns
26 freedom
27 general argument
28 glass
29 interface
30 invariants
31 model
32 noise
33 numerical simulations
34 patterns
35 potential applications
36 scale invariant
37 scaling exponents
38 simple model
39 simulations
40 state
41 stationary state
42 surface
43 system
44 temporal fluctuations
45 wide potential applications
46 schema:name Scale Invariant Spatial and Temporal Fluctuations in Complex Systems
47 schema:pagination 329-335
48 schema:productId N02ee0b752e8e47669c8f8a884ca7d3c4
49 N8b69ffd575d040d9afa36913d3644e8a
50 schema:publisher N2bbcae5d743b427598209093aa622370
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011882047
52 https://doi.org/10.1007/978-94-009-2653-0_47
53 schema:sdDatePublished 2021-11-01T18:58
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb898966f9ecc4207998a011ac1ba2678
56 schema:url https://doi.org/10.1007/978-94-009-2653-0_47
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N02ee0b752e8e47669c8f8a884ca7d3c4 schema:name dimensions_id
61 schema:value pub.1011882047
62 rdf:type schema:PropertyValue
63 N2bbcae5d743b427598209093aa622370 schema:name Springer Nature
64 rdf:type schema:Organisation
65 N30619d7f8885459ea929c5b2ba4e0213 rdf:first sg:person.010472724377.34
66 rdf:rest Nf61304551c264bfcb6d158732608cb25
67 N45b2f7fb3885492fb3ea9bf4688c0948 schema:familyName Ostrowsky
68 schema:givenName Nicole
69 rdf:type schema:Person
70 N7842719a3b7e4461b0abe39db165cbaf rdf:first Nd0e654e46a554de0944efa5c0a29276f
71 rdf:rest Nbcac94179767493dbb6ffbbac102e1d9
72 N8b69ffd575d040d9afa36913d3644e8a schema:name doi
73 schema:value 10.1007/978-94-009-2653-0_47
74 rdf:type schema:PropertyValue
75 Nb898966f9ecc4207998a011ac1ba2678 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nbcac94179767493dbb6ffbbac102e1d9 rdf:first N45b2f7fb3885492fb3ea9bf4688c0948
78 rdf:rest rdf:nil
79 Nd0e654e46a554de0944efa5c0a29276f schema:familyName Stanley
80 schema:givenName H. Eugene
81 rdf:type schema:Person
82 Nd14a1339321f442fb818c7b9824cef6a schema:isbn 978-0-7923-0073-1
83 978-94-009-2653-0
84 schema:name Random Fluctuations and Pattern Growth: Experiments and Models
85 rdf:type schema:Book
86 Nf61304551c264bfcb6d158732608cb25 rdf:first sg:person.0641171460.79
87 rdf:rest Nf819594e37304cbe80a1b7c3fd7b888e
88 Nf819594e37304cbe80a1b7c3fd7b888e rdf:first sg:person.012412304707.88
89 rdf:rest rdf:nil
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
97 schema:familyName Bak
98 schema:givenName Per
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
100 rdf:type schema:Person
101 sg:person.012412304707.88 schema:affiliation grid-institutes:grid.202665.5
102 schema:familyName Wiesenfeld
103 schema:givenName Kurt
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412304707.88
105 rdf:type schema:Person
106 sg:person.0641171460.79 schema:affiliation grid-institutes:grid.202665.5
107 schema:familyName Tang
108 schema:givenName Chao
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641171460.79
110 rdf:type schema:Person
111 grid-institutes:grid.202665.5 schema:alternateName Brookhaven National Laboratory, 11973, Upton, New York, USA
112 schema:name Brookhaven National Laboratory, 11973, Upton, New York, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...