Ordered Algebraic Structures in Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

W. A. J. Luxemburg

ABSTRACT

Real analysis is founded on the fundamental properties of the real number system. The arithmetic structures one studies in real analysis such as linear spaces and linear algebras are based on the additive structure and multiplicative structure of the reals. On the other hand, the order structure of the reals allows for comparisons of quantities expressed by inequalities. For more complex objects of real analysis such as real functions, positivity of their derivatives and integrals characterize monotonicity, another aspect of order. More... »

PAGES

131-142

Book

TITLE

Ordered Algebraic Structures

ISBN

978-94-010-7615-9
978-94-009-2472-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-2472-7_11

DOI

http://dx.doi.org/10.1007/978-94-009-2472-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017632299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology, Mathematics, 253-37, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "California Institute of Technology, Mathematics, 253-37, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luxemburg", 
        "givenName": "W. A. J.", 
        "id": "sg:person.016621530177.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "Real analysis is founded on the fundamental properties of the real number system. The arithmetic structures one studies in real analysis such as linear spaces and linear algebras are based on the additive structure and multiplicative structure of the reals. On the other hand, the order structure of the reals allows for comparisons of quantities expressed by inequalities. For more complex objects of real analysis such as real functions, positivity of their derivatives and integrals characterize monotonicity, another aspect of order.", 
    "editor": [
      {
        "familyName": "Martinez", 
        "givenName": "Jorge", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-2472-7_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7615-9", 
        "978-94-009-2472-7"
      ], 
      "name": "Ordered Algebraic Structures", 
      "type": "Book"
    }, 
    "keywords": [
      "real analysis", 
      "real number system", 
      "linear algebra", 
      "algebraic structure", 
      "linear space", 
      "multiplicative structure", 
      "additive structure", 
      "real functions", 
      "aspects of order", 
      "fundamental properties", 
      "number system", 
      "comparison of quantities", 
      "algebra", 
      "complex objects", 
      "Real", 
      "monotonicity", 
      "integrals", 
      "inequality", 
      "order structure", 
      "space", 
      "system", 
      "analysis", 
      "derivatives", 
      "function", 
      "structure", 
      "objects", 
      "quantity", 
      "order", 
      "properties", 
      "positivity", 
      "comparison", 
      "aspects", 
      "hand", 
      "one study", 
      "study", 
      "arithmetic structures one studies", 
      "structures one studies"
    ], 
    "name": "Ordered Algebraic Structures in Analysis", 
    "pagination": "131-142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017632299"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-2472-7_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-2472-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1017632299"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_57.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-2472-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2472-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2472-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2472-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-2472-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-2472-7_11 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3db40de7c9244ac08d350af81c546556
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description Real analysis is founded on the fundamental properties of the real number system. The arithmetic structures one studies in real analysis such as linear spaces and linear algebras are based on the additive structure and multiplicative structure of the reals. On the other hand, the order structure of the reals allows for comparisons of quantities expressed by inequalities. For more complex objects of real analysis such as real functions, positivity of their derivatives and integrals characterize monotonicity, another aspect of order.
7 schema:editor N5c8d4191caf54bb5bd2051d9f7f0750d
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf4a073e675b343bc9563f5896e4ae36d
12 schema:keywords Real
13 additive structure
14 algebra
15 algebraic structure
16 analysis
17 arithmetic structures one studies
18 aspects
19 aspects of order
20 comparison
21 comparison of quantities
22 complex objects
23 derivatives
24 function
25 fundamental properties
26 hand
27 inequality
28 integrals
29 linear algebra
30 linear space
31 monotonicity
32 multiplicative structure
33 number system
34 objects
35 one study
36 order
37 order structure
38 positivity
39 properties
40 quantity
41 real analysis
42 real functions
43 real number system
44 space
45 structure
46 structures one studies
47 study
48 system
49 schema:name Ordered Algebraic Structures in Analysis
50 schema:pagination 131-142
51 schema:productId N3490f29ce0f14f0aade780ae6a2e50c5
52 N816f9d63dc644244bcd4f8842e3c7b22
53 schema:publisher Nea69ce5eb69e474c8d4121ab5ee2c396
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017632299
55 https://doi.org/10.1007/978-94-009-2472-7_11
56 schema:sdDatePublished 2021-12-01T20:12
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nba1629bfdacf4868a2eccf8840b551b7
59 schema:url https://doi.org/10.1007/978-94-009-2472-7_11
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N3490f29ce0f14f0aade780ae6a2e50c5 schema:name doi
64 schema:value 10.1007/978-94-009-2472-7_11
65 rdf:type schema:PropertyValue
66 N3db40de7c9244ac08d350af81c546556 rdf:first sg:person.016621530177.98
67 rdf:rest rdf:nil
68 N5c8d4191caf54bb5bd2051d9f7f0750d rdf:first Nb65e112d78c54928b0497f8b51e2d1b0
69 rdf:rest rdf:nil
70 N816f9d63dc644244bcd4f8842e3c7b22 schema:name dimensions_id
71 schema:value pub.1017632299
72 rdf:type schema:PropertyValue
73 Nb65e112d78c54928b0497f8b51e2d1b0 schema:familyName Martinez
74 schema:givenName Jorge
75 rdf:type schema:Person
76 Nba1629bfdacf4868a2eccf8840b551b7 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nea69ce5eb69e474c8d4121ab5ee2c396 schema:name Springer Nature
79 rdf:type schema:Organisation
80 Nf4a073e675b343bc9563f5896e4ae36d schema:isbn 978-94-009-2472-7
81 978-94-010-7615-9
82 schema:name Ordered Algebraic Structures
83 rdf:type schema:Book
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:person.016621530177.98 schema:affiliation grid-institutes:grid.20861.3d
91 schema:familyName Luxemburg
92 schema:givenName W. A. J.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98
94 rdf:type schema:Person
95 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, Mathematics, 253-37, 91125, Pasadena, California, USA
96 schema:name California Institute of Technology, Mathematics, 253-37, 91125, Pasadena, California, USA
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...