Phase Transitions in Artificial Atoms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

O. Klein , C. De C. Chamon , D. Goldhaber-Gordon , M. A. Kastner , X.-G. Wen

ABSTRACT

Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition. More... »

PAGES

239-249

Book

TITLE

Quantum Transport in Semiconductor Submicron Structures

ISBN

978-94-010-7287-8
978-94-009-1760-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11

DOI

http://dx.doi.org/10.1007/978-94-009-1760-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049329248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "O.", 
        "id": "sg:person.010070224045.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070224045.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chamon", 
        "givenName": "C. De C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldhaber-Gordon", 
        "givenName": "D.", 
        "id": "sg:person.01077405550.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastner", 
        "givenName": "M. A.", 
        "id": "sg:person.011522436652.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "X.-G.", 
        "id": "sg:person.0776035550.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776035550.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition.", 
    "editor": [
      {
        "familyName": "Kramer", 
        "givenName": "Bernhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-1760-6_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7287-8", 
        "978-94-009-1760-6"
      ], 
      "name": "Quantum Transport in Semiconductor Submicron Structures", 
      "type": "Book"
    }, 
    "keywords": [
      "artificial atoms", 
      "natural atoms", 
      "magnetic field", 
      "reasonable magnetic fields", 
      "spin-singlet state", 
      "phase transition", 
      "new physics", 
      "level spacing", 
      "singlet state", 
      "atoms", 
      "physics", 
      "simple explanation", 
      "transition", 
      "small dimensions", 
      "electrons", 
      "spin", 
      "field", 
      "lithography", 
      "energy", 
      "state", 
      "quantization", 
      "charge", 
      "modern techniques", 
      "natural ones", 
      "spacing", 
      "dimensions", 
      "behave", 
      "function", 
      "one", 
      "technique", 
      "explanation", 
      "way"
    ], 
    "name": "Phase Transitions in Artificial Atoms", 
    "pagination": "239-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049329248"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-1760-6_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-1760-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1049329248"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_228.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-1760-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      59 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-1760-6_11 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author Nbdbd52c51e5446449d19f2a7694e1691
5 schema:datePublished 1996
6 schema:datePublishedReg 1996-01-01
7 schema:description Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition.
8 schema:editor N37aa35d1681c48c68246da7d0cc15a6d
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4f4743270a1548b4826e817056a096fd
13 schema:keywords artificial atoms
14 atoms
15 behave
16 charge
17 dimensions
18 electrons
19 energy
20 explanation
21 field
22 function
23 level spacing
24 lithography
25 magnetic field
26 modern techniques
27 natural atoms
28 natural ones
29 new physics
30 one
31 phase transition
32 physics
33 quantization
34 reasonable magnetic fields
35 simple explanation
36 singlet state
37 small dimensions
38 spacing
39 spin
40 spin-singlet state
41 state
42 technique
43 transition
44 way
45 schema:name Phase Transitions in Artificial Atoms
46 schema:pagination 239-249
47 schema:productId N65aac4efcf7f49648e16fddb4fe80e73
48 Nbbd171e64fd64f83b08739583c68777e
49 schema:publisher Nf4c301ad90c34cfc96933a1d910ae2f0
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049329248
51 https://doi.org/10.1007/978-94-009-1760-6_11
52 schema:sdDatePublished 2022-05-20T07:44
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nb024c86d4a674ade892e979b2a320a48
55 schema:url https://doi.org/10.1007/978-94-009-1760-6_11
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N37aa35d1681c48c68246da7d0cc15a6d rdf:first Nfbb144c1e1624cfd80fd2eb76a92fbe1
60 rdf:rest rdf:nil
61 N4f4743270a1548b4826e817056a096fd schema:isbn 978-94-009-1760-6
62 978-94-010-7287-8
63 schema:name Quantum Transport in Semiconductor Submicron Structures
64 rdf:type schema:Book
65 N5764ea3c4e4e420eb072da20fcf2462f rdf:first sg:person.011522436652.55
66 rdf:rest Nae5c29b1c2054239b21ff35f0e94eb53
67 N65aac4efcf7f49648e16fddb4fe80e73 schema:name doi
68 schema:value 10.1007/978-94-009-1760-6_11
69 rdf:type schema:PropertyValue
70 N7bcff13dcae24a85ac2d693bed8fea3d rdf:first N90a327ea17a44acbabbb3485138baaed
71 rdf:rest Nabf36179591948c9a697da72df7223ed
72 N90a327ea17a44acbabbb3485138baaed schema:affiliation grid-institutes:grid.116068.8
73 schema:familyName Chamon
74 schema:givenName C. De C.
75 rdf:type schema:Person
76 Nabf36179591948c9a697da72df7223ed rdf:first sg:person.01077405550.04
77 rdf:rest N5764ea3c4e4e420eb072da20fcf2462f
78 Nae5c29b1c2054239b21ff35f0e94eb53 rdf:first sg:person.0776035550.02
79 rdf:rest rdf:nil
80 Nb024c86d4a674ade892e979b2a320a48 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nbbd171e64fd64f83b08739583c68777e schema:name dimensions_id
83 schema:value pub.1049329248
84 rdf:type schema:PropertyValue
85 Nbdbd52c51e5446449d19f2a7694e1691 rdf:first sg:person.010070224045.32
86 rdf:rest N7bcff13dcae24a85ac2d693bed8fea3d
87 Nf4c301ad90c34cfc96933a1d910ae2f0 schema:name Springer Nature
88 rdf:type schema:Organisation
89 Nfbb144c1e1624cfd80fd2eb76a92fbe1 schema:familyName Kramer
90 schema:givenName Bernhard
91 rdf:type schema:Person
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
96 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Physical Sciences
100 rdf:type schema:DefinedTerm
101 sg:person.010070224045.32 schema:affiliation grid-institutes:grid.116068.8
102 schema:familyName Klein
103 schema:givenName O.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070224045.32
105 rdf:type schema:Person
106 sg:person.01077405550.04 schema:affiliation grid-institutes:grid.116068.8
107 schema:familyName Goldhaber-Gordon
108 schema:givenName D.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04
110 rdf:type schema:Person
111 sg:person.011522436652.55 schema:affiliation grid-institutes:grid.116068.8
112 schema:familyName Kastner
113 schema:givenName M. A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55
115 rdf:type schema:Person
116 sg:person.0776035550.02 schema:affiliation grid-institutes:grid.116068.8
117 schema:familyName Wen
118 schema:givenName X.-G.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776035550.02
120 rdf:type schema:Person
121 grid-institutes:grid.116068.8 schema:alternateName Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
122 schema:name Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...