Phase Transitions in Artificial Atoms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

O. Klein , C. De C. Chamon , D. Goldhaber-Gordon , M. A. Kastner , X.-G. Wen

ABSTRACT

Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition. More... »

PAGES

239-249

Book

TITLE

Quantum Transport in Semiconductor Submicron Structures

ISBN

978-94-010-7287-8
978-94-009-1760-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11

DOI

http://dx.doi.org/10.1007/978-94-009-1760-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049329248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "O.", 
        "id": "sg:person.010070224045.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070224045.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chamon", 
        "givenName": "C. De C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldhaber-Gordon", 
        "givenName": "D.", 
        "id": "sg:person.01077405550.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kastner", 
        "givenName": "M. A.", 
        "id": "sg:person.011522436652.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "X.-G.", 
        "id": "sg:person.0776035550.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776035550.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition.", 
    "editor": [
      {
        "familyName": "Kramer", 
        "givenName": "Bernhard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-1760-6_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7287-8", 
        "978-94-009-1760-6"
      ], 
      "name": "Quantum Transport in Semiconductor Submicron Structures", 
      "type": "Book"
    }, 
    "keywords": [
      "artificial atoms", 
      "natural atoms", 
      "magnetic field", 
      "reasonable magnetic fields", 
      "spin singlet state", 
      "new physics", 
      "phase transition", 
      "level spacing", 
      "singlet state", 
      "atoms", 
      "physics", 
      "simple explanation", 
      "small dimensions", 
      "transition", 
      "electrons", 
      "field", 
      "spin", 
      "lithography", 
      "energy", 
      "state", 
      "quantization", 
      "charge", 
      "spacing", 
      "modern techniques", 
      "technique", 
      "behave", 
      "explanation", 
      "dimensions", 
      "function", 
      "one", 
      "way", 
      "natural ones"
    ], 
    "name": "Phase Transitions in Artificial Atoms", 
    "pagination": "239-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049329248"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-1760-6_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-1760-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1049329248"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_128.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-1760-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1760-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      59 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-1760-6_11 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N50fa0dabe8634a778bc372265afd6676
5 schema:datePublished 1996
6 schema:datePublishedReg 1996-01-01
7 schema:description Modern techniques of lithography make it possible to confine electrons to sufficiently small dimensions that the quantization of their energy and charge is easily observable. Whereas the artificial atoms so formed behave in many ways like natural ones, new physics is observed because their level spacing is smaller than that of natural atoms. In particular, a phase transition as a function of magnetic field between the spin singlet state and the spin polarized state has recently been observed in artificial atoms that is inaccessible at reasonable magnetic fields in natural atoms. We present a simple explanation of the physics of this transition.
8 schema:editor N6e70c8537842410ab9ddfb367eada537
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nfc77e936406641feaaafae429f6e87cd
13 schema:keywords artificial atoms
14 atoms
15 behave
16 charge
17 dimensions
18 electrons
19 energy
20 explanation
21 field
22 function
23 level spacing
24 lithography
25 magnetic field
26 modern techniques
27 natural atoms
28 natural ones
29 new physics
30 one
31 phase transition
32 physics
33 quantization
34 reasonable magnetic fields
35 simple explanation
36 singlet state
37 small dimensions
38 spacing
39 spin
40 spin singlet state
41 state
42 technique
43 transition
44 way
45 schema:name Phase Transitions in Artificial Atoms
46 schema:pagination 239-249
47 schema:productId N0bfcf3bbadb8439ab4c336792b66024b
48 N8245d9bc443f45cf82cd3f151d75e96d
49 schema:publisher N5a706f7b266c463c8d5fcac4182b1c9d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049329248
51 https://doi.org/10.1007/978-94-009-1760-6_11
52 schema:sdDatePublished 2022-01-01T19:07
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N201c5d26c0fa44109fe95e93019a7869
55 schema:url https://doi.org/10.1007/978-94-009-1760-6_11
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N060f6da88f214526be33e828e8dedec5 schema:affiliation grid-institutes:grid.116068.8
60 schema:familyName Chamon
61 schema:givenName C. De C.
62 rdf:type schema:Person
63 N0bfcf3bbadb8439ab4c336792b66024b schema:name dimensions_id
64 schema:value pub.1049329248
65 rdf:type schema:PropertyValue
66 N201c5d26c0fa44109fe95e93019a7869 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N3bb2a7cfea1c4a6c9f30362b3e4f56e6 rdf:first sg:person.011522436652.55
69 rdf:rest N3fc92800fc7f4a7cac38e32bd98ef82b
70 N3fc92800fc7f4a7cac38e32bd98ef82b rdf:first sg:person.0776035550.02
71 rdf:rest rdf:nil
72 N50fa0dabe8634a778bc372265afd6676 rdf:first sg:person.010070224045.32
73 rdf:rest N6669786fba534e28bb2bd22378e9b98e
74 N5a706f7b266c463c8d5fcac4182b1c9d schema:name Springer Nature
75 rdf:type schema:Organisation
76 N6669786fba534e28bb2bd22378e9b98e rdf:first N060f6da88f214526be33e828e8dedec5
77 rdf:rest Nc32061f191a54e858271155fee6e75b2
78 N6bc14d473d1348deaed755d2cf2276b2 schema:familyName Kramer
79 schema:givenName Bernhard
80 rdf:type schema:Person
81 N6e70c8537842410ab9ddfb367eada537 rdf:first N6bc14d473d1348deaed755d2cf2276b2
82 rdf:rest rdf:nil
83 N8245d9bc443f45cf82cd3f151d75e96d schema:name doi
84 schema:value 10.1007/978-94-009-1760-6_11
85 rdf:type schema:PropertyValue
86 Nc32061f191a54e858271155fee6e75b2 rdf:first sg:person.01077405550.04
87 rdf:rest N3bb2a7cfea1c4a6c9f30362b3e4f56e6
88 Nfc77e936406641feaaafae429f6e87cd schema:isbn 978-94-009-1760-6
89 978-94-010-7287-8
90 schema:name Quantum Transport in Semiconductor Submicron Structures
91 rdf:type schema:Book
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
96 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Physical Sciences
100 rdf:type schema:DefinedTerm
101 sg:person.010070224045.32 schema:affiliation grid-institutes:grid.116068.8
102 schema:familyName Klein
103 schema:givenName O.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070224045.32
105 rdf:type schema:Person
106 sg:person.01077405550.04 schema:affiliation grid-institutes:grid.116068.8
107 schema:familyName Goldhaber-Gordon
108 schema:givenName D.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077405550.04
110 rdf:type schema:Person
111 sg:person.011522436652.55 schema:affiliation grid-institutes:grid.116068.8
112 schema:familyName Kastner
113 schema:givenName M. A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011522436652.55
115 rdf:type schema:Person
116 sg:person.0776035550.02 schema:affiliation grid-institutes:grid.116068.8
117 schema:familyName Wen
118 schema:givenName X.-G.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776035550.02
120 rdf:type schema:Person
121 grid-institutes:grid.116068.8 schema:alternateName Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
122 schema:name Department of Physics, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...