Extremal Dynamics and Punctuated Equilibrium in Co-evolution View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Kim Sneppen , Mogens H. Jensen

ABSTRACT

Extremal dynamics opens for a new way to understand the coherence that is observed in some large non-equilibrium systems. Extremal dynamics is characterized by quasistatic motion where only one part of the large system is active at a given instant: the part where a local variable assumes a global extremum value. Extremal dynamics may apply when the parts of the system nearly always are caught in metastable states. Examples from physics may include earthquakes, fluid invasion in porous media and possibly also dynamical roughening of interfaces. In this lecture we discuss a simple model of extremal dynamics and apply it to biological macroevolution. The model can be formulated as an ecology of adapting, interacting species. The environment of any given species is affected by other species; hence it may change with time. For rare mutations the model ecology expands at a self-organized critical state where periods of stasis alternate with avalanches of causally connected evolutionary changes. More... »

PAGES

363-370

References to SciGraph publications

Book

TITLE

Physics of Biomaterials: Fluctuations, Selfassembly and Evolution

ISBN

978-94-010-7271-7
978-94-009-1722-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-1722-4_16

DOI

http://dx.doi.org/10.1007/978-94-009-1722-4_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022702977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sneppen", 
        "givenName": "Kim", 
        "id": "sg:person.0755572020.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755572020.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "Mogens H.", 
        "id": "sg:person.01152213267.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/366223a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002202106", 
          "https://doi.org/10.1038/366223a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90053-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026082222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90053-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026082222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5193(05)80094-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031633573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0094837300011866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047294069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.11542058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.215.4539.1501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062524571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/27/2/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2408092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069917138"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Extremal dynamics opens for a new way to understand the coherence that is observed in some large non-equilibrium systems. Extremal dynamics is characterized by quasistatic motion where only one part of the large system is active at a given instant: the part where a local variable assumes a global extremum value. Extremal dynamics may apply when the parts of the system nearly always are caught in metastable states. Examples from physics may include earthquakes, fluid invasion in porous media and possibly also dynamical roughening of interfaces. In this lecture we discuss a simple model of extremal dynamics and apply it to biological macroevolution. The model can be formulated as an ecology of adapting, interacting species. The environment of any given species is affected by other species; hence it may change with time. For rare mutations the model ecology expands at a self-organized critical state where periods of stasis alternate with avalanches of causally connected evolutionary changes.", 
    "editor": [
      {
        "familyName": "Riste", 
        "givenName": "Tormod", 
        "type": "Person"
      }, 
      {
        "familyName": "Sherrington", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-1722-4_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7271-7", 
        "978-94-009-1722-4"
      ], 
      "name": "Physics of Biomaterials: Fluctuations, Selfassembly and Evolution", 
      "type": "Book"
    }, 
    "name": "Extremal Dynamics and Punctuated Equilibrium in Co-evolution", 
    "pagination": "363-370", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022702977"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-1722-4_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c28c8df3ad515953b7ffea073d4fdadda33b339d06bca4bd48e3ffa085fc879"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-1722-4_16", 
      "https://app.dimensions.ai/details/publication/pub.1022702977"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117092_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-009-1722-4_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1722-4_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1722-4_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1722-4_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1722-4_16'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-1722-4_16 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Ne824c000a2554c6d9d7f32943a424103
4 schema:citation sg:pub.10.1038/366223a0
5 https://doi.org/10.1016/0378-4371(92)90053-s
6 https://doi.org/10.1016/s0022-5193(05)80094-3
7 https://doi.org/10.1017/s0094837300011866
8 https://doi.org/10.1103/physrevlett.69.3539
9 https://doi.org/10.1103/physrevlett.71.4083
10 https://doi.org/10.1103/physrevlett.71.4087
11 https://doi.org/10.1126/science.11542058
12 https://doi.org/10.1126/science.215.4539.1501
13 https://doi.org/10.1209/0295-5075/27/2/004
14 https://doi.org/10.2307/2408092
15 schema:datePublished 1996
16 schema:datePublishedReg 1996-01-01
17 schema:description Extremal dynamics opens for a new way to understand the coherence that is observed in some large non-equilibrium systems. Extremal dynamics is characterized by quasistatic motion where only one part of the large system is active at a given instant: the part where a local variable assumes a global extremum value. Extremal dynamics may apply when the parts of the system nearly always are caught in metastable states. Examples from physics may include earthquakes, fluid invasion in porous media and possibly also dynamical roughening of interfaces. In this lecture we discuss a simple model of extremal dynamics and apply it to biological macroevolution. The model can be formulated as an ecology of adapting, interacting species. The environment of any given species is affected by other species; hence it may change with time. For rare mutations the model ecology expands at a self-organized critical state where periods of stasis alternate with avalanches of causally connected evolutionary changes.
18 schema:editor Nf41689de3cc844e9a23a4063c346be6d
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N3b7a50a72e0a47329c9e366df6ea37b0
23 schema:name Extremal Dynamics and Punctuated Equilibrium in Co-evolution
24 schema:pagination 363-370
25 schema:productId N7f762a9621c84f62ab9d1c967af44014
26 Ne3884de2e26a433fb015f2aaa9bb0e2e
27 Ne9e107c2060841449b5c00bce6bcdc94
28 schema:publisher N352e673e85d0471da5eca937dc72deff
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022702977
30 https://doi.org/10.1007/978-94-009-1722-4_16
31 schema:sdDatePublished 2019-04-16T09:26
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N3032bb5757064326a282e2ecfab4fd61
34 schema:url https://link.springer.com/10.1007%2F978-94-009-1722-4_16
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N3032bb5757064326a282e2ecfab4fd61 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N352e673e85d0471da5eca937dc72deff schema:location Dordrecht
41 schema:name Springer Netherlands
42 rdf:type schema:Organisation
43 N3b7a50a72e0a47329c9e366df6ea37b0 schema:isbn 978-94-009-1722-4
44 978-94-010-7271-7
45 schema:name Physics of Biomaterials: Fluctuations, Selfassembly and Evolution
46 rdf:type schema:Book
47 N68cf8215809d4b9bbba575368831079e schema:familyName Riste
48 schema:givenName Tormod
49 rdf:type schema:Person
50 N7f762a9621c84f62ab9d1c967af44014 schema:name readcube_id
51 schema:value 6c28c8df3ad515953b7ffea073d4fdadda33b339d06bca4bd48e3ffa085fc879
52 rdf:type schema:PropertyValue
53 Na3b5303df27042bd8fbfae5e98792a37 rdf:first sg:person.01152213267.83
54 rdf:rest rdf:nil
55 Nb1fe7f89fcfe43c7a4a115062ae3bd0d schema:familyName Sherrington
56 schema:givenName David
57 rdf:type schema:Person
58 Nd47576bd06ba407cb7cbcd3ce1fe97ba rdf:first Nb1fe7f89fcfe43c7a4a115062ae3bd0d
59 rdf:rest rdf:nil
60 Ne3884de2e26a433fb015f2aaa9bb0e2e schema:name dimensions_id
61 schema:value pub.1022702977
62 rdf:type schema:PropertyValue
63 Ne824c000a2554c6d9d7f32943a424103 rdf:first sg:person.0755572020.37
64 rdf:rest Na3b5303df27042bd8fbfae5e98792a37
65 Ne9e107c2060841449b5c00bce6bcdc94 schema:name doi
66 schema:value 10.1007/978-94-009-1722-4_16
67 rdf:type schema:PropertyValue
68 Nf41689de3cc844e9a23a4063c346be6d rdf:first N68cf8215809d4b9bbba575368831079e
69 rdf:rest Nd47576bd06ba407cb7cbcd3ce1fe97ba
70 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
71 schema:name Biological Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
74 schema:name Ecology
75 rdf:type schema:DefinedTerm
76 sg:person.01152213267.83 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
77 schema:familyName Jensen
78 schema:givenName Mogens H.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83
80 rdf:type schema:Person
81 sg:person.0755572020.37 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
82 schema:familyName Sneppen
83 schema:givenName Kim
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755572020.37
85 rdf:type schema:Person
86 sg:pub.10.1038/366223a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002202106
87 https://doi.org/10.1038/366223a0
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0378-4371(92)90053-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1026082222
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0022-5193(05)80094-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031633573
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1017/s0094837300011866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047294069
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.69.3539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805836
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.71.4083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808191
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.71.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808192
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1126/science.11542058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457472
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1126/science.215.4539.1501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062524571
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1209/0295-5075/27/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230020
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/2408092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069917138
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
110 schema:name The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...