From Cosmic Formation of Chiral Bioorganics in Interstellar Dust to Comet Seeds of Life’s Origins: Are 1025 Chances Enough ? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

J. Mayo Greenberg , Aigen Li

ABSTRACT

Infrared spectra have been obtained for laboratory residues of photoprocessed low temperature ices which have been exposed to long term solar ultraviolet radiation on the EURECA satellite. This is an analog to the ultraviolet processing of interstellar dust mantles in diffuse clouds after leaving molecular clouds. The 3.4 µm absorption features of these organic materials match those of the diffuse cloud interstellar dust better than any other previously suggested analog to the interstellar organics. The silicate core-organic refractory mantle elongated interstellar dust model is shown to provide the best fit to date with interstellar polarization. Such core-mantle particles are the basic unit in the comet dust structure which, along with the presence of chirality in the organic mantles and the fluffy morphological structure, provide a strongly directed environment for rapid prebiotic chemical evolution within those comet dust particles which survived and landed in water following comet impacts on the early earth. More... »

PAGES

51-71

Book

TITLE

Chemical Evolution: Physics of the Origin and Evolution of Life

ISBN

978-94-010-7266-3
978-94-009-1712-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-1712-5_4

DOI

http://dx.doi.org/10.1007/978-94-009-1712-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012219093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greenberg", 
        "givenName": "J. Mayo", 
        "id": "sg:person.01306006036.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306006036.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Aigen", 
        "id": "sg:person.014411002373.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411002373.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "Infrared spectra have been obtained for laboratory residues of photoprocessed low temperature ices which have been exposed to long term solar ultraviolet radiation on the EURECA satellite. This is an analog to the ultraviolet processing of interstellar dust mantles in diffuse clouds after leaving molecular clouds. The 3.4 \u00b5m absorption features of these organic materials match those of the diffuse cloud interstellar dust better than any other previously suggested analog to the interstellar organics. The silicate core-organic refractory mantle elongated interstellar dust model is shown to provide the best fit to date with interstellar polarization. Such core-mantle particles are the basic unit in the comet dust structure which, along with the presence of chirality in the organic mantles and the fluffy morphological structure, provide a strongly directed environment for rapid prebiotic chemical evolution within those comet dust particles which survived and landed in water following comet impacts on the early earth.", 
    "editor": [
      {
        "familyName": "Chela-Flores", 
        "givenName": "Julian", 
        "type": "Person"
      }, 
      {
        "familyName": "Raulin", 
        "givenName": "Fran\u00e7ois", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-1712-5_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7266-3", 
        "978-94-009-1712-5"
      ], 
      "name": "Chemical Evolution: Physics of the Origin and Evolution of Life", 
      "type": "Book"
    }, 
    "keywords": [
      "core-mantle particles", 
      "comet dust particles", 
      "prebiotic chemical evolution", 
      "refractory mantle", 
      "early Earth", 
      "solar ultraviolet radiation", 
      "comet impacts", 
      "interstellar dust mantles", 
      "dust mantle", 
      "low-temperature ice", 
      "cosmic formation", 
      "chemical evolution", 
      "mantle", 
      "EURECA satellite", 
      "dust model", 
      "dust particles", 
      "life origins", 
      "interstellar organics", 
      "organic materials", 
      "presence of chirality", 
      "interstellar dust", 
      "interstellar dust model", 
      "absorption features", 
      "dust", 
      "infrared spectra", 
      "organic mantles", 
      "laboratory residues", 
      "cloud", 
      "ice", 
      "ultraviolet processing", 
      "origin", 
      "Earth", 
      "diffuse clouds", 
      "ultraviolet radiation", 
      "satellite", 
      "morphological structure", 
      "water", 
      "organics", 
      "best fit", 
      "bioorganics", 
      "analogues", 
      "evolution", 
      "chirality", 
      "particles", 
      "structure", 
      "formation", 
      "dust structures", 
      "spectra", 
      "radiation", 
      "environment", 
      "date", 
      "impact", 
      "materials", 
      "residues", 
      "molecular clouds", 
      "units", 
      "model", 
      "features", 
      "polarization", 
      "presence", 
      "fit", 
      "basic unit", 
      "interstellar polarization", 
      "processing", 
      "seeds", 
      "Enough"
    ], 
    "name": "From Cosmic Formation of Chiral Bioorganics in Interstellar Dust to Comet Seeds of Life\u2019s Origins: Are 1025 Chances Enough ?", 
    "pagination": "51-71", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012219093"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-1712-5_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-1712-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1012219093"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_270.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-1712-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1712-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1712-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1712-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1712-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-1712-5_4 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author Ncf9ca3218fd64f2ea26b00fed68d0966
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description Infrared spectra have been obtained for laboratory residues of photoprocessed low temperature ices which have been exposed to long term solar ultraviolet radiation on the EURECA satellite. This is an analog to the ultraviolet processing of interstellar dust mantles in diffuse clouds after leaving molecular clouds. The 3.4 µm absorption features of these organic materials match those of the diffuse cloud interstellar dust better than any other previously suggested analog to the interstellar organics. The silicate core-organic refractory mantle elongated interstellar dust model is shown to provide the best fit to date with interstellar polarization. Such core-mantle particles are the basic unit in the comet dust structure which, along with the presence of chirality in the organic mantles and the fluffy morphological structure, provide a strongly directed environment for rapid prebiotic chemical evolution within those comet dust particles which survived and landed in water following comet impacts on the early earth.
7 schema:editor Nf3e4c22a6b4748f0a841d8f2fde6478e
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3376745c267f442c828eeb512887be87
11 schema:keywords EURECA satellite
12 Earth
13 Enough
14 absorption features
15 analogues
16 basic unit
17 best fit
18 bioorganics
19 chemical evolution
20 chirality
21 cloud
22 comet dust particles
23 comet impacts
24 core-mantle particles
25 cosmic formation
26 date
27 diffuse clouds
28 dust
29 dust mantle
30 dust model
31 dust particles
32 dust structures
33 early Earth
34 environment
35 evolution
36 features
37 fit
38 formation
39 ice
40 impact
41 infrared spectra
42 interstellar dust
43 interstellar dust mantles
44 interstellar dust model
45 interstellar organics
46 interstellar polarization
47 laboratory residues
48 life origins
49 low-temperature ice
50 mantle
51 materials
52 model
53 molecular clouds
54 morphological structure
55 organic mantles
56 organic materials
57 organics
58 origin
59 particles
60 polarization
61 prebiotic chemical evolution
62 presence
63 presence of chirality
64 processing
65 radiation
66 refractory mantle
67 residues
68 satellite
69 seeds
70 solar ultraviolet radiation
71 spectra
72 structure
73 ultraviolet processing
74 ultraviolet radiation
75 units
76 water
77 schema:name From Cosmic Formation of Chiral Bioorganics in Interstellar Dust to Comet Seeds of Life’s Origins: Are 1025 Chances Enough ?
78 schema:pagination 51-71
79 schema:productId N52e7ded8399849c6860ceecfbceb9c16
80 Naf50a4e10ab749f8b35b0fedaf9ebe80
81 schema:publisher N763a9d02fc5f470e9d1c7864ecf3e8ab
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012219093
83 https://doi.org/10.1007/978-94-009-1712-5_4
84 schema:sdDatePublished 2022-12-01T06:49
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nd9750a8c92b94043a4b03c5a83863f20
87 schema:url https://doi.org/10.1007/978-94-009-1712-5_4
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N0b02d0236e2b42549aba3f4112d54f2d rdf:first sg:person.014411002373.04
92 rdf:rest rdf:nil
93 N2495df1b2cdb4afa8c1616202b3679f0 schema:familyName Chela-Flores
94 schema:givenName Julian
95 rdf:type schema:Person
96 N3376745c267f442c828eeb512887be87 schema:isbn 978-94-009-1712-5
97 978-94-010-7266-3
98 schema:name Chemical Evolution: Physics of the Origin and Evolution of Life
99 rdf:type schema:Book
100 N52e7ded8399849c6860ceecfbceb9c16 schema:name doi
101 schema:value 10.1007/978-94-009-1712-5_4
102 rdf:type schema:PropertyValue
103 N763a9d02fc5f470e9d1c7864ecf3e8ab schema:name Springer Nature
104 rdf:type schema:Organisation
105 N908377b3b2d648fba0234194c2ef1966 rdf:first Ne1ee034f81b44b13a5ea18d07440cb07
106 rdf:rest rdf:nil
107 Naf50a4e10ab749f8b35b0fedaf9ebe80 schema:name dimensions_id
108 schema:value pub.1012219093
109 rdf:type schema:PropertyValue
110 Ncf9ca3218fd64f2ea26b00fed68d0966 rdf:first sg:person.01306006036.10
111 rdf:rest N0b02d0236e2b42549aba3f4112d54f2d
112 Nd9750a8c92b94043a4b03c5a83863f20 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ne1ee034f81b44b13a5ea18d07440cb07 schema:familyName Raulin
115 schema:givenName François
116 rdf:type schema:Person
117 Nf3e4c22a6b4748f0a841d8f2fde6478e rdf:first N2495df1b2cdb4afa8c1616202b3679f0
118 rdf:rest N908377b3b2d648fba0234194c2ef1966
119 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
120 schema:name Earth Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
123 schema:name Geochemistry
124 rdf:type schema:DefinedTerm
125 sg:person.01306006036.10 schema:affiliation grid-institutes:grid.5132.5
126 schema:familyName Greenberg
127 schema:givenName J. Mayo
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306006036.10
129 rdf:type schema:Person
130 sg:person.014411002373.04 schema:affiliation grid-institutes:grid.5132.5
131 schema:familyName Li
132 schema:givenName Aigen
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014411002373.04
134 rdf:type schema:Person
135 grid-institutes:grid.5132.5 schema:alternateName Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands
136 schema:name Laboratory Astrophysics, University of Leiden, Postbus 9504, 2300 RA, Leiden, The Netherlands
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...