Gravitational Wave Experiments with Resonant Antennas View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

G. Pizzella

ABSTRACT

The basic features of the resonant antennas for the search of gravitational waves are reviewed. These antennas detect the Fourier component H(ω) of the metric tensor perturbation h(t) at the antenna resonance. By means of proper optimum filters, like the Wiener filter, it is possible to reach a sensitivity which is basically limited by the noise of the electronic amplifier. For one cryogenic antenna with mass M=2300 kg and temperature T=20 mK the sensitivity should be of the order of hmin ≃ 5 x 10-21. It is shown that the bandwidth of the resonant antennas is much larger than the width of the resonance curve; it can reach values up to 100 Hz if a low noise amplifier is available. Finally the Rome antenna is briefly described. This antenna has a sensitivity of the order of hmin ≃ 10-18 and has operated for nine months. More... »

PAGES

173-194

Book

TITLE

Gravitational Wave Data Analysis

ISBN

978-94-010-7028-7
978-94-009-1185-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-1185-7_13

DOI

http://dx.doi.org/10.1007/978-94-009-1185-7_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017111834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470218.8", 
          "name": [
            "Department of Physics, La Sapienza University, P.le A.Moro 2, 00185, Rome, Italy", 
            "Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pizzella", 
        "givenName": "G.", 
        "id": "sg:person.016536750112.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "The basic features of the resonant antennas for the search of gravitational waves are reviewed. These antennas detect the Fourier component H(\u03c9) of the metric tensor perturbation h(t) at the antenna resonance. By means of proper optimum filters, like the Wiener filter, it is possible to reach a sensitivity which is basically limited by the noise of the electronic amplifier. For one cryogenic antenna with mass M=2300 kg and temperature T=20 mK the sensitivity should be of the order of hmin \u2243 5 x 10-21. It is shown that the bandwidth of the resonant antennas is much larger than the width of the resonance curve; it can reach values up to 100 Hz if a low noise amplifier is available. Finally the Rome antenna is briefly described. This antenna has a sensitivity of the order of hmin \u2243 10-18 and has operated for nine months.", 
    "editor": [
      {
        "familyName": "Schutz", 
        "givenName": "B. F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-1185-7_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-7028-7", 
        "978-94-009-1185-7"
      ], 
      "name": "Gravitational Wave Data Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "resonant antenna", 
      "low noise amplifier", 
      "metric tensor perturbation", 
      "antenna resonance", 
      "noise amplifier", 
      "antenna", 
      "gravitational wave experiments", 
      "cryogenic antenna", 
      "electronic amplifier", 
      "amplifier", 
      "gravitational waves", 
      "wave experiments", 
      "resonance curves", 
      "bandwidth", 
      "filter", 
      "Fourier components", 
      "tensor perturbations", 
      "optimum filter", 
      "Wiener filter", 
      "basic features", 
      "noise", 
      "hmin", 
      "resonance", 
      "waves", 
      "sensitivity", 
      "Hz", 
      "width", 
      "order", 
      "perturbations", 
      "mass", 
      "temperature", 
      "experiments", 
      "features", 
      "curves", 
      "components", 
      "means", 
      "values", 
      "search", 
      "months", 
      "proper optimum filters", 
      "order of hmin", 
      "Rome antenna"
    ], 
    "name": "Gravitational Wave Experiments with Resonant Antennas", 
    "pagination": "173-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017111834"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-1185-7_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-1185-7_13", 
      "https://app.dimensions.ai/details/publication/pub.1017111834"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_359.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-1185-7_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1185-7_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1185-7_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1185-7_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-1185-7_13'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-1185-7_13 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Naa76ca370eae4d869bd3e425196ac430
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description The basic features of the resonant antennas for the search of gravitational waves are reviewed. These antennas detect the Fourier component H(ω) of the metric tensor perturbation h(t) at the antenna resonance. By means of proper optimum filters, like the Wiener filter, it is possible to reach a sensitivity which is basically limited by the noise of the electronic amplifier. For one cryogenic antenna with mass M=2300 kg and temperature T=20 mK the sensitivity should be of the order of hmin ≃ 5 x 10-21. It is shown that the bandwidth of the resonant antennas is much larger than the width of the resonance curve; it can reach values up to 100 Hz if a low noise amplifier is available. Finally the Rome antenna is briefly described. This antenna has a sensitivity of the order of hmin ≃ 10-18 and has operated for nine months.
7 schema:editor Ne1d0ae24a1af43e381993612144d6aeb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nfe379194ba7c471f818d244e8e33027e
12 schema:keywords Fourier components
13 Hz
14 Rome antenna
15 Wiener filter
16 amplifier
17 antenna
18 antenna resonance
19 bandwidth
20 basic features
21 components
22 cryogenic antenna
23 curves
24 electronic amplifier
25 experiments
26 features
27 filter
28 gravitational wave experiments
29 gravitational waves
30 hmin
31 low noise amplifier
32 mass
33 means
34 metric tensor perturbation
35 months
36 noise
37 noise amplifier
38 optimum filter
39 order
40 order of hmin
41 perturbations
42 proper optimum filters
43 resonance
44 resonance curves
45 resonant antenna
46 search
47 sensitivity
48 temperature
49 tensor perturbations
50 values
51 wave experiments
52 waves
53 width
54 schema:name Gravitational Wave Experiments with Resonant Antennas
55 schema:pagination 173-194
56 schema:productId N1a56bf8bc48649d2bc31dc464245ee47
57 N793c0ef73ddc43f8b36fe0b23636fafa
58 schema:publisher Nf54e8a979dee49b187c47e55af44c111
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017111834
60 https://doi.org/10.1007/978-94-009-1185-7_13
61 schema:sdDatePublished 2021-12-01T20:07
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N1687ab1df6594a39b33dfaa144f854b3
64 schema:url https://doi.org/10.1007/978-94-009-1185-7_13
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N1687ab1df6594a39b33dfaa144f854b3 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N1a56bf8bc48649d2bc31dc464245ee47 schema:name dimensions_id
71 schema:value pub.1017111834
72 rdf:type schema:PropertyValue
73 N793c0ef73ddc43f8b36fe0b23636fafa schema:name doi
74 schema:value 10.1007/978-94-009-1185-7_13
75 rdf:type schema:PropertyValue
76 Naa76ca370eae4d869bd3e425196ac430 rdf:first sg:person.016536750112.16
77 rdf:rest rdf:nil
78 Ncd4c51af7ff94e549e9a65f596933d87 schema:familyName Schutz
79 schema:givenName B. F.
80 rdf:type schema:Person
81 Ne1d0ae24a1af43e381993612144d6aeb rdf:first Ncd4c51af7ff94e549e9a65f596933d87
82 rdf:rest rdf:nil
83 Nf54e8a979dee49b187c47e55af44c111 schema:name Springer Nature
84 rdf:type schema:Organisation
85 Nfe379194ba7c471f818d244e8e33027e schema:isbn 978-94-009-1185-7
86 978-94-010-7028-7
87 schema:name Gravitational Wave Data Analysis
88 rdf:type schema:Book
89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
90 schema:name Technology
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
93 schema:name Communications Technologies
94 rdf:type schema:DefinedTerm
95 sg:person.016536750112.16 schema:affiliation grid-institutes:grid.470218.8
96 schema:familyName Pizzella
97 schema:givenName G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16
99 rdf:type schema:Person
100 grid-institutes:grid.470218.8 schema:alternateName Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy
101 schema:name Department of Physics, La Sapienza University, P.le A.Moro 2, 00185, Rome, Italy
102 Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...