Ontology type: schema:Chapter Open Access: True
1989
AUTHORSD. Schryvers , L. E. Tanner , G. Van Tendeloo
ABSTRACTRecent investigations of displacive transformations in a wide range of metallic [1,2] and non-metallic materials [3,4] have been providing new insights into precursor behavior, viz., changes in parent phase properties and microstructure leading to these transformations. This behavior is viewed as evidence that the parent phase effectively “prepares itself” for the eventual transformation via related lattice displacements (usually incommensurate with the basic lattice), where the process is believed driven by anomalous temperature-dependent phonon effects [1–7]. The elucidation of this behavior is now aiding in the development of more effective models for displacive transformations, particularly those producing martensitic phases in metallic alloys [2,5–7]. More... »
PAGES599-603
Alloy Phase Stability
ISBN
978-94-010-6901-4
978-94-009-0915-1
http://scigraph.springernature.com/pub.10.1007/978-94-009-0915-1_37
DOIhttp://dx.doi.org/10.1007/978-94-009-0915-1_37
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046330898
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Berkeley",
"id": "https://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA",
"National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, 94720, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Schryvers",
"givenName": "D.",
"id": "sg:person.013773701247.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773701247.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lawrence Livermore National Laboratory",
"id": "https://www.grid.ac/institutes/grid.250008.f",
"name": [
"Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA"
],
"type": "Organization"
},
"familyName": "Tanner",
"givenName": "L. E.",
"id": "sg:person.011167126171.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011167126171.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Antwerp",
"id": "https://www.grid.ac/institutes/grid.5284.b",
"name": [
"RUCA, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerpen, Belgium"
],
"type": "Organization"
},
"familyName": "Van Tendeloo",
"givenName": "G.",
"id": "sg:person.0642063214.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642063214.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0304-3991(84)90130-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002486692"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0304-3991(84)90130-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002486692"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01418618308234902",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010103040"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-83033-4_28",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011363448",
"https://doi.org/10.1007/978-3-642-83033-4_28"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01418618308234903",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015054556"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0036-9748(76)90205-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019084422"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0036-9748(76)90205-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019084422"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1107/s0567739474001884",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022065756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01418618308234917",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023381805"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0036-9748(87)90359-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031966304"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0036-9748(87)90359-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031966304"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1151-2916.1986.tb07362.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042367414"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0079-6425(86)90007-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046118129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0079-6425(86)90007-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046118129"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/14786436608218994",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049893042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.57.2458",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060794117"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.57.2458",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060794117"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.57.3199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060794370"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.57.3199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060794370"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/jpsj.54.2948",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063108567"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1180/minmag.1971.038.293.01",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064116845"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2320/jinstmet1952.48.9_881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084964298"
],
"type": "CreativeWork"
}
],
"datePublished": "1989",
"datePublishedReg": "1989-01-01",
"description": "Recent investigations of displacive transformations in a wide range of metallic [1,2] and non-metallic materials [3,4] have been providing new insights into precursor behavior, viz., changes in parent phase properties and microstructure leading to these transformations. This behavior is viewed as evidence that the parent phase effectively \u201cprepares itself\u201d for the eventual transformation via related lattice displacements (usually incommensurate with the basic lattice), where the process is believed driven by anomalous temperature-dependent phonon effects [1\u20137]. The elucidation of this behavior is now aiding in the development of more effective models for displacive transformations, particularly those producing martensitic phases in metallic alloys [2,5\u20137].",
"editor": [
{
"familyName": "Stocks",
"givenName": "G. M.",
"type": "Person"
},
{
"familyName": "Gonis",
"givenName": "A.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-009-0915-1_37",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-94-010-6901-4",
"978-94-009-0915-1"
],
"name": "Alloy Phase Stability",
"type": "Book"
},
"name": "Premartensitic Microstructures as Seen in the High Resolution Electron Microscope: A Study of a Ni-al Alloy",
"pagination": "599-603",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046330898"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-009-0915-1_37"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"dcb2f12bed221a79ba6feada1db283832599983f1f0136b4bb8ce6c88078fd1f"
]
}
],
"publisher": {
"location": "Dordrecht",
"name": "Springer Netherlands",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-009-0915-1_37",
"https://app.dimensions.ai/details/publication/pub.1046330898"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T09:15",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000004.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-94-009-0915-1_37"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0915-1_37'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0915-1_37'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0915-1_37'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0915-1_37'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
43 URIs
20 LITERALS
8 BLANK NODES