Infeasible Interior Point Methods for Solving Linear Programs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

J. Stoer

ABSTRACT

Interior point methods that follow the primal-dual central path of a dual pair of linear programs (P0), (D0) require that these problems are strictly feasible. To get around this difficulty, one technique is to embed (P0), (D0) into a family of suitably perturbed strictly feasible linear programs (Pr), (Dr), r > 0 More... »

PAGES

415-434

Book

TITLE

Algorithms for Continuous Optimization

ISBN

978-94-010-6652-5
978-94-009-0369-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-0369-2_14

DOI

http://dx.doi.org/10.1007/978-94-009-0369-2_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024232101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik und Statistik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "J.", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "Interior point methods that follow the primal-dual central path of a dual pair of linear programs (P0), (D0) require that these problems are strictly feasible. To get around this difficulty, one technique is to embed (P0), (D0) into a family of suitably perturbed strictly feasible linear programs (Pr), (Dr), r > 0", 
    "editor": [
      {
        "familyName": "Spedicato", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-0369-2_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6652-5", 
        "978-94-009-0369-2"
      ], 
      "name": "Algorithms for Continuous Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "program", 
      "family", 
      "difficulties", 
      "method", 
      "technique", 
      "interior point method", 
      "pairs", 
      "problem", 
      "linear program", 
      "primal-dual central path", 
      "point method", 
      "infeasible interior-point method", 
      "central path", 
      "dual pair", 
      "path"
    ], 
    "name": "Infeasible Interior Point Methods for Solving Linear Programs", 
    "pagination": "415-434", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024232101"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-0369-2_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-0369-2_14", 
      "https://app.dimensions.ai/details/publication/pub.1024232101"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_431.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-0369-2_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0369-2_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0369-2_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0369-2_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0369-2_14'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      23 PREDICATES      41 URIs      34 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-0369-2_14 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N541fd479484d4a52ac8dd950f239ea6d
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description Interior point methods that follow the primal-dual central path of a dual pair of linear programs (P0), (D0) require that these problems are strictly feasible. To get around this difficulty, one technique is to embed (P0), (D0) into a family of suitably perturbed strictly feasible linear programs (Pr), (Dr), r > 0
7 schema:editor N403f77055295447c94fa9ae3320d3c94
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N347ec0bba0b648129b2226b52a3ac9ed
12 schema:keywords central path
13 difficulties
14 dual pair
15 family
16 infeasible interior-point method
17 interior point method
18 linear program
19 method
20 pairs
21 path
22 point method
23 primal-dual central path
24 problem
25 program
26 technique
27 schema:name Infeasible Interior Point Methods for Solving Linear Programs
28 schema:pagination 415-434
29 schema:productId N45ac067a8c0f4fffa1883c6dbc96d948
30 Ne4f9017151764a6ebe5d237b2934c635
31 schema:publisher N84d125807eeb4ec2aeffe9618069cdd3
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024232101
33 https://doi.org/10.1007/978-94-009-0369-2_14
34 schema:sdDatePublished 2022-06-01T22:35
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nf05bb8604521424bbb5e82ceca892ec0
37 schema:url https://doi.org/10.1007/978-94-009-0369-2_14
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N347ec0bba0b648129b2226b52a3ac9ed schema:isbn 978-94-009-0369-2
42 978-94-010-6652-5
43 schema:name Algorithms for Continuous Optimization
44 rdf:type schema:Book
45 N403f77055295447c94fa9ae3320d3c94 rdf:first Na5dda920253d458bb12a602f0120955f
46 rdf:rest rdf:nil
47 N45ac067a8c0f4fffa1883c6dbc96d948 schema:name doi
48 schema:value 10.1007/978-94-009-0369-2_14
49 rdf:type schema:PropertyValue
50 N541fd479484d4a52ac8dd950f239ea6d rdf:first sg:person.011465456275.61
51 rdf:rest rdf:nil
52 N84d125807eeb4ec2aeffe9618069cdd3 schema:name Springer Nature
53 rdf:type schema:Organisation
54 Na5dda920253d458bb12a602f0120955f schema:familyName Spedicato
55 schema:givenName Emilio
56 rdf:type schema:Person
57 Ne4f9017151764a6ebe5d237b2934c635 schema:name dimensions_id
58 schema:value pub.1024232101
59 rdf:type schema:PropertyValue
60 Nf05bb8604521424bbb5e82ceca892ec0 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
66 schema:name Numerical and Computational Mathematics
67 rdf:type schema:DefinedTerm
68 sg:person.011465456275.61 schema:affiliation grid-institutes:grid.8379.5
69 schema:familyName Stoer
70 schema:givenName J.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
72 rdf:type schema:Person
73 grid-institutes:grid.8379.5 schema:alternateName Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
74 schema:name Institut für Angewandte Mathematik und Statistik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...