Electronic Shells and Supershells in Gallium and Aluminum Clusters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

J. Lerme , M. Pellarin , B. Baguenard , C. Bordas , E. Cottancin , J. L. Vialle , M. Broyer

ABSTRACT

As first shown by Knight et al on sodium clusters NaN[1] the size-dependence of simple-metal cluster properties are to a large extent correlated to the electronic shell structure of their conduction electrons. In the early stage alkali species have been extensively studied because of their simple atomic and bulk electronic structures and the ability to produce intense cluster beams of these low melting-point elements [2,3]. Subsequently the shell structure has been observed in mass spectra of more complex elements, where ion-pseudopotential and band-structure effects are known to be stronger in the bulk, such as noble and group-II B elements, and trivalent group-IIII A metals (s2p1 atomic configuration) [2,3]. A comparative analysis of various mass spectra reported in the literature clearly proves that the development of the electronic shell structure in large clusters requires experimental conditions ensuring the melting -or at least the surface melting- of the ionic frame [4]. As long as only the qualitative features of the electronic shell structure are concerned, the theoretical description of the electronic cloud interacting with the ionic background may be merely reduced to the problem of Ne=vN independent itinerant electrons trapped in a spherical flatbottom potential well (v is the valence number). The shell structure is simply the direct consequence of the non-smooth quantized bound spectrum in the finitesize confining potential. Most of the theoretical and experimental works aim to determine the characteristic sizes related to the shell structure and to locate the size range where the geometric effects or the bulk behaviour begin to prevail. As it will be shown below this size range strongly depends on the experimental conditions. More... »

PAGES

71-88

References to SciGraph publications

  • 1992. RPA in nuclei and metal clusters in NUCLEAR PHYSICS CONCEPTS IN THE STUDY OF ATOMIC CLUSTER PHYSICS
  • 1995-06. Nonlocal ion potential effects on the optical response of lithium clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-09. On the shell structure and geometry of monovalent metal clusters in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • 1991-10. Observation of quantum supershells in clusters of sodium atoms in NATURE
  • 1995-09. Electronic properties of large metal clusters in jellium and pseudo-jellium models in ZEITSCHRIFT FÜR PHYSIK D ATOMS,MOLECULES AND CLUSTERS
  • Book

    TITLE

    Large Clusters of Atoms and Molecules

    ISBN

    978-94-010-6579-5
    978-94-009-0211-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-009-0211-4_3

    DOI

    http://dx.doi.org/10.1007/978-94-009-0211-4_3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018526194


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lerme", 
            "givenName": "J.", 
            "id": "sg:person.013627007227.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627007227.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pellarin", 
            "givenName": "M.", 
            "id": "sg:person.01260470570.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260470570.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baguenard", 
            "givenName": "B.", 
            "id": "sg:person.0751137713.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137713.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bordas", 
            "givenName": "C.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cottancin", 
            "givenName": "E.", 
            "id": "sg:person.01076126770.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076126770.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vialle", 
            "givenName": "J. L.", 
            "id": "sg:person.016362054647.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362054647.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire", 
              "id": "https://www.grid.ac/institutes/grid.463958.5", 
              "name": [
                "Laboratoire de Spectrom\u00e9trie Ionique et Mol\u00e9culaire, CNRS and Universit\u00e9 Lyon I, B\u00e2timent 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne c\u00e9dex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Broyer", 
            "givenName": "M.", 
            "id": "sg:person.0640745075.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640745075.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01437434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004472013", 
              "https://doi.org/10.1007/bf01437434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01437434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004472013", 
              "https://doi.org/10.1007/bf01437434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01437314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005764313", 
              "https://doi.org/10.1007/bf01437314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01437314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005764313", 
              "https://doi.org/10.1007/bf01437314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/353733a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014270391", 
              "https://doi.org/10.1038/353733a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(92)87029-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022723052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01426385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037421058", 
              "https://doi.org/10.1007/bf01426385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01426385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037421058", 
              "https://doi.org/10.1007/bf01426385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(93)85159-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045209453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-55625-7_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048538769", 
              "https://doi.org/10.1007/3-540-55625-7_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(91)85132-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050568189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(72)90006-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050765637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2614(91)80191-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051804990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1142066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057669800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.464257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058042267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.466894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058044900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.3902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060490242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.51.3902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060490242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.9377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.9377", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.2271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.47.2271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060565787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.12110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060567274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.12110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060567274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.14708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060567649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.14708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060567649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.17645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.17645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.18164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.18164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.9028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.9028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.5558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.5558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.14163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060577528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.14163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060577528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.2868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.52.2868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060578055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.2141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.52.2141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.2088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.2539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.2539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217984993000229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062947935"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1996", 
        "datePublishedReg": "1996-01-01", 
        "description": "As first shown by Knight et al on sodium clusters NaN[1] the size-dependence of simple-metal cluster properties are to a large extent correlated to the electronic shell structure of their conduction electrons. In the early stage alkali species have been extensively studied because of their simple atomic and bulk electronic structures and the ability to produce intense cluster beams of these low melting-point elements [2,3]. Subsequently the shell structure has been observed in mass spectra of more complex elements, where ion-pseudopotential and band-structure effects are known to be stronger in the bulk, such as noble and group-II B elements, and trivalent group-IIII A metals (s2p1 atomic configuration) [2,3]. A comparative analysis of various mass spectra reported in the literature clearly proves that the development of the electronic shell structure in large clusters requires experimental conditions ensuring the melting -or at least the surface melting- of the ionic frame [4]. As long as only the qualitative features of the electronic shell structure are concerned, the theoretical description of the electronic cloud interacting with the ionic background may be merely reduced to the problem of Ne=vN independent itinerant electrons trapped in a spherical flatbottom potential well (v is the valence number). The shell structure is simply the direct consequence of the non-smooth quantized bound spectrum in the finitesize confining potential. Most of the theoretical and experimental works aim to determine the characteristic sizes related to the shell structure and to locate the size range where the geometric effects or the bulk behaviour begin to prevail. As it will be shown below this size range strongly depends on the experimental conditions.", 
        "editor": [
          {
            "familyName": "Martin", 
            "givenName": "T. P.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-009-0211-4_3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-010-6579-5", 
            "978-94-009-0211-4"
          ], 
          "name": "Large Clusters of Atoms and Molecules", 
          "type": "Book"
        }, 
        "name": "Electronic Shells and Supershells in Gallium and Aluminum Clusters", 
        "pagination": "71-88", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018526194"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-009-0211-4_3"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "58450f2f4610b2b03b63b99240b417ce83fc4aed566b73d26e4f20c093fcea11"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-009-0211-4_3", 
          "https://app.dimensions.ai/details/publication/pub.1018526194"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117117_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-94-009-0211-4_3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0211-4_3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0211-4_3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0211-4_3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0211-4_3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      23 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-009-0211-4_3 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author Nee8695376a174ceba3ff9fce4e95ffb9
    4 schema:citation sg:pub.10.1007/3-540-55625-7_28
    5 sg:pub.10.1007/bf01426385
    6 sg:pub.10.1007/bf01437314
    7 sg:pub.10.1007/bf01437434
    8 sg:pub.10.1038/353733a0
    9 https://doi.org/10.1016/0003-4916(72)90006-1
    10 https://doi.org/10.1016/0009-2614(91)80191-y
    11 https://doi.org/10.1016/0009-2614(92)87029-o
    12 https://doi.org/10.1016/0009-2614(93)85159-l
    13 https://doi.org/10.1016/s0009-2614(91)85132-g
    14 https://doi.org/10.1063/1.1142066
    15 https://doi.org/10.1063/1.464257
    16 https://doi.org/10.1063/1.466894
    17 https://doi.org/10.1103/physreva.51.3902
    18 https://doi.org/10.1103/physrevb.29.1558
    19 https://doi.org/10.1103/physrevb.42.9377
    20 https://doi.org/10.1103/physrevb.47.2271
    21 https://doi.org/10.1103/physrevb.48.12110
    22 https://doi.org/10.1103/physrevb.48.14708
    23 https://doi.org/10.1103/physrevb.48.17645
    24 https://doi.org/10.1103/physrevb.48.18164
    25 https://doi.org/10.1103/physrevb.48.9028
    26 https://doi.org/10.1103/physrevb.50.5558
    27 https://doi.org/10.1103/physrevb.52.14163
    28 https://doi.org/10.1103/physrevb.52.2868
    29 https://doi.org/10.1103/physrevlett.52.2141
    30 https://doi.org/10.1103/physrevlett.62.2088
    31 https://doi.org/10.1103/physrevlett.64.2539
    32 https://doi.org/10.1103/physrevlett.67.3286
    33 https://doi.org/10.1103/revmodphys.65.611
    34 https://doi.org/10.1103/revmodphys.65.677
    35 https://doi.org/10.1142/s0217984993000229
    36 schema:datePublished 1996
    37 schema:datePublishedReg 1996-01-01
    38 schema:description As first shown by Knight et al on sodium clusters NaN[1] the size-dependence of simple-metal cluster properties are to a large extent correlated to the electronic shell structure of their conduction electrons. In the early stage alkali species have been extensively studied because of their simple atomic and bulk electronic structures and the ability to produce intense cluster beams of these low melting-point elements [2,3]. Subsequently the shell structure has been observed in mass spectra of more complex elements, where ion-pseudopotential and band-structure effects are known to be stronger in the bulk, such as noble and group-II B elements, and trivalent group-IIII A metals (s2p1 atomic configuration) [2,3]. A comparative analysis of various mass spectra reported in the literature clearly proves that the development of the electronic shell structure in large clusters requires experimental conditions ensuring the melting -or at least the surface melting- of the ionic frame [4]. As long as only the qualitative features of the electronic shell structure are concerned, the theoretical description of the electronic cloud interacting with the ionic background may be merely reduced to the problem of Ne=vN independent itinerant electrons trapped in a spherical flatbottom potential well (v is the valence number). The shell structure is simply the direct consequence of the non-smooth quantized bound spectrum in the finitesize confining potential. Most of the theoretical and experimental works aim to determine the characteristic sizes related to the shell structure and to locate the size range where the geometric effects or the bulk behaviour begin to prevail. As it will be shown below this size range strongly depends on the experimental conditions.
    39 schema:editor N5ac3b70928f64dc2aabdbe681b4548e5
    40 schema:genre chapter
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf N39485b6bfa4542cfac48101aed5908d1
    44 schema:name Electronic Shells and Supershells in Gallium and Aluminum Clusters
    45 schema:pagination 71-88
    46 schema:productId N7c17925f870345f29099865d5d4bcd88
    47 N8bca62f0e39244d2a60fceea5566cb16
    48 Nfbcf0297a7b04ef2bed0d61352632a6a
    49 schema:publisher N75283efc41ab4273b4a045dd5ad1c29f
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018526194
    51 https://doi.org/10.1007/978-94-009-0211-4_3
    52 schema:sdDatePublished 2019-04-16T09:29
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N5f70eeca760c41d2ba507f67c77bd6fa
    55 schema:url https://link.springer.com/10.1007%2F978-94-009-0211-4_3
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset chapters
    58 rdf:type schema:Chapter
    59 N1b539b4f89ab44e497a5206e1faaac05 rdf:first sg:person.0640745075.62
    60 rdf:rest rdf:nil
    61 N2cf5b81dc3374ad5a30d216173e5f6cd rdf:first sg:person.01076126770.21
    62 rdf:rest N80d57794363a47d8b338b1a3fabedf0f
    63 N3339636b3ac847e19272bf54449720fa schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    64 schema:familyName Bordas
    65 schema:givenName C.
    66 rdf:type schema:Person
    67 N39485b6bfa4542cfac48101aed5908d1 schema:isbn 978-94-009-0211-4
    68 978-94-010-6579-5
    69 schema:name Large Clusters of Atoms and Molecules
    70 rdf:type schema:Book
    71 N5ac3b70928f64dc2aabdbe681b4548e5 rdf:first Nf337f1113ce64710839e208559731c9b
    72 rdf:rest rdf:nil
    73 N5e5ffd2fd1f84ef7ba5445a11fe515d1 rdf:first N3339636b3ac847e19272bf54449720fa
    74 rdf:rest N2cf5b81dc3374ad5a30d216173e5f6cd
    75 N5f70eeca760c41d2ba507f67c77bd6fa schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 N75283efc41ab4273b4a045dd5ad1c29f schema:location Dordrecht
    78 schema:name Springer Netherlands
    79 rdf:type schema:Organisation
    80 N7c17925f870345f29099865d5d4bcd88 schema:name doi
    81 schema:value 10.1007/978-94-009-0211-4_3
    82 rdf:type schema:PropertyValue
    83 N80d57794363a47d8b338b1a3fabedf0f rdf:first sg:person.016362054647.92
    84 rdf:rest N1b539b4f89ab44e497a5206e1faaac05
    85 N8bca62f0e39244d2a60fceea5566cb16 schema:name dimensions_id
    86 schema:value pub.1018526194
    87 rdf:type schema:PropertyValue
    88 Na013c9547f934daf857fe2da2a659324 rdf:first sg:person.01260470570.00
    89 rdf:rest Nae86b5d418d341fcb63f745c0257bfa2
    90 Nae86b5d418d341fcb63f745c0257bfa2 rdf:first sg:person.0751137713.37
    91 rdf:rest N5e5ffd2fd1f84ef7ba5445a11fe515d1
    92 Nee8695376a174ceba3ff9fce4e95ffb9 rdf:first sg:person.013627007227.99
    93 rdf:rest Na013c9547f934daf857fe2da2a659324
    94 Nf337f1113ce64710839e208559731c9b schema:familyName Martin
    95 schema:givenName T. P.
    96 rdf:type schema:Person
    97 Nfbcf0297a7b04ef2bed0d61352632a6a schema:name readcube_id
    98 schema:value 58450f2f4610b2b03b63b99240b417ce83fc4aed566b73d26e4f20c093fcea11
    99 rdf:type schema:PropertyValue
    100 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Chemical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Theoretical and Computational Chemistry
    105 rdf:type schema:DefinedTerm
    106 sg:person.01076126770.21 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    107 schema:familyName Cottancin
    108 schema:givenName E.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076126770.21
    110 rdf:type schema:Person
    111 sg:person.01260470570.00 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    112 schema:familyName Pellarin
    113 schema:givenName M.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260470570.00
    115 rdf:type schema:Person
    116 sg:person.013627007227.99 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    117 schema:familyName Lerme
    118 schema:givenName J.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013627007227.99
    120 rdf:type schema:Person
    121 sg:person.016362054647.92 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    122 schema:familyName Vialle
    123 schema:givenName J. L.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362054647.92
    125 rdf:type schema:Person
    126 sg:person.0640745075.62 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    127 schema:familyName Broyer
    128 schema:givenName M.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640745075.62
    130 rdf:type schema:Person
    131 sg:person.0751137713.37 schema:affiliation https://www.grid.ac/institutes/grid.463958.5
    132 schema:familyName Baguenard
    133 schema:givenName B.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751137713.37
    135 rdf:type schema:Person
    136 sg:pub.10.1007/3-540-55625-7_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048538769
    137 https://doi.org/10.1007/3-540-55625-7_28
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf01426385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037421058
    140 https://doi.org/10.1007/bf01426385
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf01437314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005764313
    143 https://doi.org/10.1007/bf01437314
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf01437434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004472013
    146 https://doi.org/10.1007/bf01437434
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/353733a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014270391
    149 https://doi.org/10.1038/353733a0
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/0003-4916(72)90006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050765637
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/0009-2614(91)80191-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051804990
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/0009-2614(92)87029-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1022723052
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/0009-2614(93)85159-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1045209453
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0009-2614(91)85132-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1050568189
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1063/1.1142066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057669800
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1063/1.464257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058042267
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1063/1.466894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044900
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physreva.51.3902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490242
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.29.1558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534002
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.42.9377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556281
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevb.47.2271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565787
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevb.48.12110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060567274
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevb.48.14708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060567649
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevb.48.17645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568074
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevb.48.18164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568142
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physrevb.48.9028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569253
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevb.50.5558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574043
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevb.52.14163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577528
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevb.52.2868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578055
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/physrevlett.52.2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790007
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1103/physrevlett.62.2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798693
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevlett.64.2539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800611
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevlett.67.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803663
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/revmodphys.65.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839298
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/revmodphys.65.677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839299
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1142/s0217984993000229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062947935
    204 rdf:type schema:CreativeWork
    205 https://www.grid.ac/institutes/grid.463958.5 schema:alternateName Laboratoire de Spectrométrie Ionique et Moléculaire
    206 schema:name Laboratoire de Spectrométrie Ionique et Moléculaire, CNRS and Université Lyon I, Bâtiment 205, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne cédex, France
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...