The Nonthermal Energy Content and Gamma Ray Emission of Starburst Galaxies and Clusters of Galaxies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

H. J. Völk , F. A. Aharonian , D. Breitschwerdt

ABSTRACT

The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay γ-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy γ-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history. More... »

PAGES

279-297

References to SciGraph publications

Book

TITLE

TeV Gamma-Ray Astrophysics

ISBN

978-94-010-6561-0
978-94-009-0171-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-0171-1_21

DOI

http://dx.doi.org/10.1007/978-94-009-0171-1_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039290178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00f6lk", 
        "givenName": "H. J.", 
        "id": "sg:person.016224723375.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224723375.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F. A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Postfach 103980, D-69029\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breitschwerdt", 
        "givenName": "D.", 
        "id": "sg:person.015765502631.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765502631.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/358477a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002652464", 
          "https://doi.org/10.1038/358477a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6505(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-6505(94)90043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002981052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0083-6656(82)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026548670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0083-6656(82)90005-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026548670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/57/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031818720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0794-5_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034211832", 
          "https://doi.org/10.1007/978-94-011-0794-5_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0794-5_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034211832", 
          "https://doi.org/10.1007/978-94-011-0794-5_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/311517a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040881057", 
          "https://doi.org/10.1038/311517a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1350-4495(94)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046045430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1350-4495(94)90108-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046045430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/155011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058486301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/159128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058490418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/163108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058494398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/164857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058496147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/164990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058496280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/167045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058498335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/168812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058500102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/169030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058500320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/169743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058501033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/170560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058501850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058504748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/184430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058513939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/187222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058516731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/187715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058517223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.46.4188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptp.64.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063138062"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay \u03b3-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy \u03b3-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.", 
    "editor": [
      {
        "familyName": "V\u00f6lk", 
        "givenName": "Heinrich J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Aharonian", 
        "givenName": "Felix A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-0171-1_21", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6561-0", 
        "978-94-009-0171-1"
      ], 
      "name": "TeV Gamma-Ray Astrophysics", 
      "type": "Book"
    }, 
    "name": "The Nonthermal Energy Content and Gamma Ray Emission of Starburst Galaxies and Clusters of Galaxies", 
    "pagination": "279-297", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-0171-1_21"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb28295731206254ec7240d5e07deb5c94e4f2f8ea0cfb44f4f10c7145eb474c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039290178"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-0171-1_21", 
      "https://app.dimensions.ai/details/publication/pub.1039290178"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-94-009-0171-1_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0171-1_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0171-1_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0171-1_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0171-1_21'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-0171-1_21 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N7d821b3b776e476693bc014b0168b4a2
4 schema:citation sg:pub.10.1007/978-94-011-0794-5_36
5 sg:pub.10.1038/311517a0
6 sg:pub.10.1038/358477a0
7 https://doi.org/10.1016/0083-6656(82)90005-8
8 https://doi.org/10.1016/0927-6505(94)90043-4
9 https://doi.org/10.1016/1350-4495(94)90108-2
10 https://doi.org/10.1086/155011
11 https://doi.org/10.1086/159128
12 https://doi.org/10.1086/163108
13 https://doi.org/10.1086/164857
14 https://doi.org/10.1086/164990
15 https://doi.org/10.1086/167045
16 https://doi.org/10.1086/168812
17 https://doi.org/10.1086/169030
18 https://doi.org/10.1086/169743
19 https://doi.org/10.1086/170560
20 https://doi.org/10.1086/173458
21 https://doi.org/10.1086/184430
22 https://doi.org/10.1086/186369
23 https://doi.org/10.1086/187222
24 https://doi.org/10.1086/187715
25 https://doi.org/10.1088/0034-4885/57/4/001
26 https://doi.org/10.1103/physrevd.46.4188
27 https://doi.org/10.1143/ptp.64.1995
28 schema:datePublished 1996
29 schema:datePublishedReg 1996-01-01
30 schema:description The nonthermal particle production in contemporary starburst galaxies and in galaxy clusters is estimated from the Supernova rate, the iron content, and an evaluation of the dynamical processes which characterize these objects. The primary energy derives from SN explosions of massive stars. The nonthermal energy is transformed by various secondary processes, like acceleration of particles by Supernova Remnants as well as diffusion and/or convection in galactic winds. If convection dominates, the energy spectrum of nonthermal particles will remain hard. At greater distances from the galaxy almost the entire enthalpy of thermal gas and Cosmic Rays will be converted into wind kinetic energy, implying a fatal adiabatic energy loss for the nonthermal component. If this wind is strong enough then it will end in a strong termination shock, producing a new generation of nonthermal particles which are subsequently released without significant adiabatic losses into the external medium. In clusters of galaxies this should only be the case for early type galaxies, in agreement with observations. Clusters should also accumulate their nonthermal component over their entire history and energize it by gravitational contraction. The pion decay γ-ray fluxes of nearby contemporary starburst galaxies is quite small. However rich clusters should be extended sources of very high energy γ-rays, detectable by the next generation of systems of air Cherenkov telescopes. Such observations will provide an independent empirical method to investigate these objects and their cosmological history.
31 schema:editor Nc2264c43a3af44ed99431bf158f41e5c
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Neb507b36a7d24a889a04f918e61ec421
36 schema:name The Nonthermal Energy Content and Gamma Ray Emission of Starburst Galaxies and Clusters of Galaxies
37 schema:pagination 279-297
38 schema:productId N99118ea60f784ec6b21ad52fb4a090a1
39 Nba0b2fff2c0b45deae61674a2c0edc4d
40 Ne644177cf1cc41ef961b0672d3f39515
41 schema:publisher Ndcc7552822254ec2911ce3928cec6049
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039290178
43 https://doi.org/10.1007/978-94-009-0171-1_21
44 schema:sdDatePublished 2019-04-15T10:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N7d2263d943604582aea02cd511739180
47 schema:url http://link.springer.com/10.1007/978-94-009-0171-1_21
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N23d410859d13403ea3ed74f909ba3748 schema:familyName Aharonian
52 schema:givenName Felix A.
53 rdf:type schema:Person
54 N50c5f6113e104e139c694830560ec0e4 rdf:first sg:person.01354457257.24
55 rdf:rest Nec8850afa8fb48cf9b8befe8dff457a1
56 N6f402873f90c4258aca55c5baf27eb05 schema:familyName Völk
57 schema:givenName Heinrich J.
58 rdf:type schema:Person
59 N7a60f0ac63874a14947f314cc948cfe9 rdf:first N23d410859d13403ea3ed74f909ba3748
60 rdf:rest rdf:nil
61 N7d2263d943604582aea02cd511739180 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N7d821b3b776e476693bc014b0168b4a2 rdf:first sg:person.016224723375.15
64 rdf:rest N50c5f6113e104e139c694830560ec0e4
65 N99118ea60f784ec6b21ad52fb4a090a1 schema:name readcube_id
66 schema:value bb28295731206254ec7240d5e07deb5c94e4f2f8ea0cfb44f4f10c7145eb474c
67 rdf:type schema:PropertyValue
68 Nba0b2fff2c0b45deae61674a2c0edc4d schema:name dimensions_id
69 schema:value pub.1039290178
70 rdf:type schema:PropertyValue
71 Nc2264c43a3af44ed99431bf158f41e5c rdf:first N6f402873f90c4258aca55c5baf27eb05
72 rdf:rest N7a60f0ac63874a14947f314cc948cfe9
73 Ndcc7552822254ec2911ce3928cec6049 schema:location Dordrecht
74 schema:name Springer Netherlands
75 rdf:type schema:Organisation
76 Ne644177cf1cc41ef961b0672d3f39515 schema:name doi
77 schema:value 10.1007/978-94-009-0171-1_21
78 rdf:type schema:PropertyValue
79 Neb507b36a7d24a889a04f918e61ec421 schema:isbn 978-94-009-0171-1
80 978-94-010-6561-0
81 schema:name TeV Gamma-Ray Astrophysics
82 rdf:type schema:Book
83 Nec8850afa8fb48cf9b8befe8dff457a1 rdf:first sg:person.015765502631.05
84 rdf:rest rdf:nil
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
89 schema:name Astronomical and Space Sciences
90 rdf:type schema:DefinedTerm
91 sg:person.01354457257.24 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
92 schema:familyName Aharonian
93 schema:givenName F. A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
95 rdf:type schema:Person
96 sg:person.015765502631.05 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
97 schema:familyName Breitschwerdt
98 schema:givenName D.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765502631.05
100 rdf:type schema:Person
101 sg:person.016224723375.15 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
102 schema:familyName Völk
103 schema:givenName H. J.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016224723375.15
105 rdf:type schema:Person
106 sg:pub.10.1007/978-94-011-0794-5_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034211832
107 https://doi.org/10.1007/978-94-011-0794-5_36
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/311517a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040881057
110 https://doi.org/10.1038/311517a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/358477a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002652464
113 https://doi.org/10.1038/358477a0
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0083-6656(82)90005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026548670
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0927-6505(94)90043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002981052
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/1350-4495(94)90108-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046045430
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1086/155011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058486301
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1086/159128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058490418
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1086/163108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058494398
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1086/164857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058496147
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1086/164990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058496280
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1086/167045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058498335
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1086/168812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058500102
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1086/169030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058500320
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1086/169743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058501033
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1086/170560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058501850
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1086/173458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058504748
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1086/184430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058513939
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1086/186369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515878
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1086/187222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058516731
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1086/187715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058517223
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/0034-4885/57/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031818720
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevd.46.4188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700742
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1143/ptp.64.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063138062
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.419604.e schema:alternateName Max Planck Institute for Nuclear Physics
158 schema:name Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...