Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

L. Stergioulas , A. Vourdas , G. R. Jones

ABSTRACT

The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct “clean” images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values. More... »

PAGES

109-116

Book

TITLE

Maximum Entropy and Bayesian Methods

ISBN

978-94-010-6534-4
978-94-009-0107-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12

DOI

http://dx.doi.org/10.1007/978-94-009-0107-0_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007781903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stergioulas", 
        "givenName": "L.", 
        "id": "sg:person.014131766137.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131766137.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vourdas", 
        "givenName": "A.", 
        "id": "sg:person.012726447121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "G. R.", 
        "id": "sg:person.014203474074.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203474074.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct \u201cclean\u201d images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values.", 
    "editor": [
      {
        "familyName": "Skilling", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Sibisi", 
        "givenName": "Sibusiso", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-0107-0_12", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6534-4", 
        "978-94-009-0107-0"
      ], 
      "name": "Maximum Entropy and Bayesian Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "maximum entropy method", 
      "optical fiber sensing", 
      "entropy method", 
      "optical fiber", 
      "fiber sensing", 
      "lower moments", 
      "mathematical point", 
      "finite number", 
      "moment problem", 
      "maximum entropy", 
      "discrete variables", 
      "higher moments", 
      "moment", 
      "reduction of noise", 
      "noise analysis", 
      "original one", 
      "noise", 
      "entropy", 
      "sensing", 
      "images", 
      "problem", 
      "fibers", 
      "method", 
      "variables", 
      "point", 
      "output", 
      "one", 
      "number", 
      "useful information", 
      "cases", 
      "values", 
      "analysis", 
      "information", 
      "view", 
      "reduction", 
      "study"
    ], 
    "name": "Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method", 
    "pagination": "109-116", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007781903"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-0107-0_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-0107-0_12", 
      "https://app.dimensions.ai/details/publication/pub.1007781903"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_302.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-0107-0_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-0107-0_12 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N3e18bc350aef478c9d96b084569cb137
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct “clean” images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values.
7 schema:editor N314703004b1e4818bbb37c7272fc5b9a
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N984427937ee643f6b48c84e97baac753
11 schema:keywords analysis
12 cases
13 discrete variables
14 entropy
15 entropy method
16 fiber sensing
17 fibers
18 finite number
19 higher moments
20 images
21 information
22 lower moments
23 mathematical point
24 maximum entropy
25 maximum entropy method
26 method
27 moment
28 moment problem
29 noise
30 noise analysis
31 number
32 one
33 optical fiber
34 optical fiber sensing
35 original one
36 output
37 point
38 problem
39 reduction
40 reduction of noise
41 sensing
42 study
43 useful information
44 values
45 variables
46 view
47 schema:name Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method
48 schema:pagination 109-116
49 schema:productId N132510699fdc46869dcf8ee7372e86ac
50 Nc991f4d6a27b4b7b941ed13acc998dfe
51 schema:publisher N81134aad53e74695bc7bd19993f6adcc
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007781903
53 https://doi.org/10.1007/978-94-009-0107-0_12
54 schema:sdDatePublished 2022-12-01T06:51
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N5780d6e299034548b5920518638f957e
57 schema:url https://doi.org/10.1007/978-94-009-0107-0_12
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N132510699fdc46869dcf8ee7372e86ac schema:name doi
62 schema:value 10.1007/978-94-009-0107-0_12
63 rdf:type schema:PropertyValue
64 N1e9ca44515214f57848868f6f437e71e rdf:first sg:person.012726447121.07
65 rdf:rest N7d37bf79b8a54571bc3dee14bff4a174
66 N28709609cd7d4df5928ae8579344c251 schema:familyName Skilling
67 schema:givenName John
68 rdf:type schema:Person
69 N314703004b1e4818bbb37c7272fc5b9a rdf:first N28709609cd7d4df5928ae8579344c251
70 rdf:rest Nd4d85dc5caa04e928fe57d482692d010
71 N3e18bc350aef478c9d96b084569cb137 rdf:first sg:person.014131766137.19
72 rdf:rest N1e9ca44515214f57848868f6f437e71e
73 N5780d6e299034548b5920518638f957e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N7d37bf79b8a54571bc3dee14bff4a174 rdf:first sg:person.014203474074.90
76 rdf:rest rdf:nil
77 N81134aad53e74695bc7bd19993f6adcc schema:name Springer Nature
78 rdf:type schema:Organisation
79 N984427937ee643f6b48c84e97baac753 schema:isbn 978-94-009-0107-0
80 978-94-010-6534-4
81 schema:name Maximum Entropy and Bayesian Methods
82 rdf:type schema:Book
83 N99a5618ebcc44631a52923e785b9178a schema:familyName Sibisi
84 schema:givenName Sibusiso
85 rdf:type schema:Person
86 Nc991f4d6a27b4b7b941ed13acc998dfe schema:name dimensions_id
87 schema:value pub.1007781903
88 rdf:type schema:PropertyValue
89 Nd4d85dc5caa04e928fe57d482692d010 rdf:first N99a5618ebcc44631a52923e785b9178a
90 rdf:rest rdf:nil
91 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
92 schema:name Technology
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
95 schema:name Communications Technologies
96 rdf:type schema:DefinedTerm
97 sg:person.012726447121.07 schema:affiliation grid-institutes:grid.10025.36
98 schema:familyName Vourdas
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07
101 rdf:type schema:Person
102 sg:person.014131766137.19 schema:affiliation grid-institutes:grid.10025.36
103 schema:familyName Stergioulas
104 schema:givenName L.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131766137.19
106 rdf:type schema:Person
107 sg:person.014203474074.90 schema:affiliation grid-institutes:grid.10025.36
108 schema:familyName Jones
109 schema:givenName G. R.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203474074.90
111 rdf:type schema:Person
112 grid-institutes:grid.10025.36 schema:alternateName Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK
113 schema:name Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...