Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

L. Stergioulas , A. Vourdas , G. R. Jones

ABSTRACT

The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct “clean” images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values. More... »

PAGES

109-116

Book

TITLE

Maximum Entropy and Bayesian Methods

ISBN

978-94-010-6534-4
978-94-009-0107-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12

DOI

http://dx.doi.org/10.1007/978-94-009-0107-0_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007781903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stergioulas", 
        "givenName": "L.", 
        "id": "sg:person.014131766137.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131766137.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vourdas", 
        "givenName": "A.", 
        "id": "sg:person.012726447121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK", 
          "id": "http://www.grid.ac/institutes/grid.10025.36", 
          "name": [
            "Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "G. R.", 
        "id": "sg:person.014203474074.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203474074.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct \u201cclean\u201d images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values.", 
    "editor": [
      {
        "familyName": "Skilling", 
        "givenName": "John", 
        "type": "Person"
      }, 
      {
        "familyName": "Sibisi", 
        "givenName": "Sibusiso", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-009-0107-0_12", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-010-6534-4", 
        "978-94-009-0107-0"
      ], 
      "name": "Maximum Entropy and Bayesian Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "maximum entropy method", 
      "optical fiber sensing", 
      "entropy method", 
      "optical fiber", 
      "fiber sensing", 
      "lower moments", 
      "mathematical point", 
      "finite number", 
      "moment problem", 
      "maximum entropy", 
      "discrete variables", 
      "higher moments", 
      "moment", 
      "reduction of noise", 
      "noise analysis", 
      "original one", 
      "noise", 
      "entropy", 
      "sensing", 
      "images", 
      "problem", 
      "fibers", 
      "method", 
      "variables", 
      "point", 
      "output", 
      "one", 
      "number", 
      "useful information", 
      "cases", 
      "values", 
      "analysis", 
      "information", 
      "view", 
      "reduction", 
      "study"
    ], 
    "name": "Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method", 
    "pagination": "109-116", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007781903"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-009-0107-0_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-009-0107-0_12", 
      "https://app.dimensions.ai/details/publication/pub.1007781903"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_359.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-009-0107-0_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-009-0107-0_12'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-009-0107-0_12 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nea03314824244686aefa69c35756bab1
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description The maximum entropy method is used for the reduction of noise in images at the output of an optical fibre. Assuming that the useful information is in the lowest moments and that the higher moments are influenced by noise, we construct “clean” images that have the same lower moments as the original ones and maximum entropy. Prom a mathematical point of view, we study the moment problem with the maximum entropy method for the case of a discrete variable that takes a finite number of values.
7 schema:editor N6c5fc590c7e74111b88e42b2b0e327be
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3432bcbf5fa84d889a717a150cb90550
11 schema:keywords analysis
12 cases
13 discrete variables
14 entropy
15 entropy method
16 fiber sensing
17 fibers
18 finite number
19 higher moments
20 images
21 information
22 lower moments
23 mathematical point
24 maximum entropy
25 maximum entropy method
26 method
27 moment
28 moment problem
29 noise
30 noise analysis
31 number
32 one
33 optical fiber
34 optical fiber sensing
35 original one
36 output
37 point
38 problem
39 reduction
40 reduction of noise
41 sensing
42 study
43 useful information
44 values
45 variables
46 view
47 schema:name Noise Analysis in Optical Fibre Sensing: A Study using the Maximum Entropy Method
48 schema:pagination 109-116
49 schema:productId N8f4435b41731424dbc2e909bd7338a66
50 Nd91e192a72d846afa35dbbf2a8e4c783
51 schema:publisher N67d6fc77d2f94641917e8ba127df11cc
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007781903
53 https://doi.org/10.1007/978-94-009-0107-0_12
54 schema:sdDatePublished 2022-10-01T06:57
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ndfab64c0b0384adf993452252708f78d
57 schema:url https://doi.org/10.1007/978-94-009-0107-0_12
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N1ad7ae4a851848f6bcdcf74107a06f1c rdf:first N978b351ad6844ccca794322794ff4ba6
62 rdf:rest rdf:nil
63 N3432bcbf5fa84d889a717a150cb90550 schema:isbn 978-94-009-0107-0
64 978-94-010-6534-4
65 schema:name Maximum Entropy and Bayesian Methods
66 rdf:type schema:Book
67 N67d6fc77d2f94641917e8ba127df11cc schema:name Springer Nature
68 rdf:type schema:Organisation
69 N6c5fc590c7e74111b88e42b2b0e327be rdf:first N9aadfb2c471147d88c35a4d0e9335790
70 rdf:rest N1ad7ae4a851848f6bcdcf74107a06f1c
71 N75e8917b6c4d4d5bb1f7b971042c5f76 rdf:first sg:person.012726447121.07
72 rdf:rest Na5ce4802e88e44c8b767382b0057bbbb
73 N8f4435b41731424dbc2e909bd7338a66 schema:name dimensions_id
74 schema:value pub.1007781903
75 rdf:type schema:PropertyValue
76 N978b351ad6844ccca794322794ff4ba6 schema:familyName Sibisi
77 schema:givenName Sibusiso
78 rdf:type schema:Person
79 N9aadfb2c471147d88c35a4d0e9335790 schema:familyName Skilling
80 schema:givenName John
81 rdf:type schema:Person
82 Na5ce4802e88e44c8b767382b0057bbbb rdf:first sg:person.014203474074.90
83 rdf:rest rdf:nil
84 Nd91e192a72d846afa35dbbf2a8e4c783 schema:name doi
85 schema:value 10.1007/978-94-009-0107-0_12
86 rdf:type schema:PropertyValue
87 Ndfab64c0b0384adf993452252708f78d schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nea03314824244686aefa69c35756bab1 rdf:first sg:person.014131766137.19
90 rdf:rest N75e8917b6c4d4d5bb1f7b971042c5f76
91 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
92 schema:name Technology
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
95 schema:name Communications Technologies
96 rdf:type schema:DefinedTerm
97 sg:person.012726447121.07 schema:affiliation grid-institutes:grid.10025.36
98 schema:familyName Vourdas
99 schema:givenName A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726447121.07
101 rdf:type schema:Person
102 sg:person.014131766137.19 schema:affiliation grid-institutes:grid.10025.36
103 schema:familyName Stergioulas
104 schema:givenName L.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131766137.19
106 rdf:type schema:Person
107 sg:person.014203474074.90 schema:affiliation grid-institutes:grid.10025.36
108 schema:familyName Jones
109 schema:givenName G. R.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203474074.90
111 rdf:type schema:Person
112 grid-institutes:grid.10025.36 schema:alternateName Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK
113 schema:name Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, P.O.BOX 147, L69 3BX, Liverpool, UK
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...