Understanding and Predicting Climate Variability and Change at Monsoon Regions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013-05-08

AUTHORS

Carolina Vera , William Gutowski , Carlos R. Mechoso , B. N. Goswami , Chris C. Reason , Chris D. Thorncroft , Jose Antonio Marengo , Bruce Hewitson , Harry Hendon , Colin Jones , Piero Lionello

ABSTRACT

The chapter highlights selected scientific advances made under WCRP leadership in understanding climate variability and predictability at regional scales with emphasis on the monsoon regions. They are mainly related to a better understanding of the physical processes related to the ocean-land-atmosphere interaction that characterize the monsoon variability as well as to a better knowledge of the sources of climate predictability. The chapter also highlights a number of challenges that are considered crucial to improving the ability to simulate and thereby predict regional climate variability. The representation of multi-scale convection and its interaction with coupled modes of tropical variability (where coupling refers both to ocean-atmosphere and/or land-atmosphere coupling) remains the leading problem to be addressed in all aspects of monsoon simulations (intraseasonal to decadal prediction, and to climate change).Systematic errors in the simulation of the mean annual and diurnal cycles continue to be critical issues that reflect fundamental deficiencies in the representation of moist physics and atmosphere/land/ocean coupling. These errors do not appear to be remedied by simple model resolution increases, and they are likely a major impediment to improving the skill of monsoon forecasts at all time scales. Other processes, however, can also play an important role in climate simulation at regional levels. The influence of land cover change requires better quantification. Likewise, aerosol loading resulting from biomass burning, urban activities and land use changes due to agriculture are potentially important climate forcings requiring better understanding and representation in models. More work is also required to elucidate mechanisms that give rise to intraseasonal variability. On longer timescales an improved understanding of interannual to decadal monsoon variability and predictability is required to better understand, attribute and simulate near-term climate change and to assess the potential for interannual and longer monsoon prediction.A need is found to strengthen the links between model evaluation at the applications level and process-oriented refinement of model formulation. Further work is required to develop and sustain effective communication among the observation, model user, and model development communities, as well as between the academic and “operational” model development communities. More research and investment is needed to translate climate data into actionable information at the regional and local scales required for decisions. More... »

PAGES

273-306

Book

TITLE

Climate Science for Serving Society

ISBN

978-94-007-6691-4
978-94-007-6692-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-6692-1_11

DOI

http://dx.doi.org/10.1007/978-94-007-6692-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024955848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Intendente Guiraldes 2160 \u2013 Ciudad Universitaria, Pabell\u00f3n II \u2013 2do. piso, C1428EGA, Buenos Aires, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.482261.b", 
          "name": [
            "Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Intendente Guiraldes 2160 \u2013 Ciudad Universitaria, Pabell\u00f3n II \u2013 2do. piso, C1428EGA, Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vera", 
        "givenName": "Carolina", 
        "id": "sg:person.015347174377.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347174377.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geological & Atmospheric Sciences, Department of Agronomy, Iowa State University, 3021 Agronomy, 50011, Ames, IA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Department of Geological & Atmospheric Sciences, Department of Agronomy, Iowa State University, 3021 Agronomy, 50011, Ames, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutowski", 
        "givenName": "William", 
        "id": "sg:person.013166424105.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166424105.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), 7127 Math Sciences Building, 405 Hilgard Avenue, 90095-1565, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), 7127 Math Sciences Building, 405 Hilgard Avenue, 90095-1565, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mechoso", 
        "givenName": "Carlos R.", 
        "id": "sg:person.01356063664.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356063664.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., 411008, Pashan, Pune, India", 
          "id": "http://www.grid.ac/institutes/grid.417983.0", 
          "name": [
            "Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., 411008, Pashan, Pune, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goswami", 
        "givenName": "B. N.", 
        "id": "sg:person.011545135005.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545135005.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Oceanography, University of Cape Town, X3, 7701, Rondebosch, Cape Town, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.7836.a", 
          "name": [
            "Department of Oceanography, University of Cape Town, X3, 7701, Rondebosch, Cape Town, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reason", 
        "givenName": "Chris C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, DAES \u2013 ES351, 12222, Albany, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.265850.c", 
          "name": [
            "Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, DAES \u2013 ES351, 12222, Albany, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorncroft", 
        "givenName": "Chris D.", 
        "id": "sg:person.014541216226.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541216226.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Ciencia do Sistema Terrestre (CCST), INPE, S\u00e3o Paulo, Brazil", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centro de Ciencia do Sistema Terrestre (CCST), INPE, S\u00e3o Paulo, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marengo", 
        "givenName": "Jose Antonio", 
        "id": "sg:person.014674460013.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674460013.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental & Geographical Science, Climate Systems Analysis Group (CSAG), University of Cape Town, 7701, Rondebosch, RSA, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.7836.a", 
          "name": [
            "Department of Environmental & Geographical Science, Climate Systems Analysis Group (CSAG), University of Cape Town, 7701, Rondebosch, RSA, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hewitson", 
        "givenName": "Bruce", 
        "id": "sg:person.010605677641.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605677641.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Australian Weather and Climate Research, Bureau of Meteorology, 1289, 3001, Melbourne, VIC, Australia", 
          "id": "http://www.grid.ac/institutes/grid.473897.6", 
          "name": [
            "Centre for Australian Weather and Climate Research, Bureau of Meteorology, 1289, 3001, Melbourne, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hendon", 
        "givenName": "Harry", 
        "id": "sg:person.012424720345.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424720345.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rossby Center, Swedish Meteorological and Hydrological Institute, SE-601 76, Norrk\u00f6ping, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.6057.4", 
          "name": [
            "Rossby Center, Swedish Meteorological and Hydrological Institute, SE-601 76, Norrk\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Colin", 
        "id": "sg:person.07561752345.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561752345.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e0 del Salento \u2013 Dipartimento di Scienze e Tecnolog, University of Salento and CMCC, N7-73100, Piazza Tancredi, Lecce, Italy", 
          "id": "http://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Universit\u00e0 del Salento \u2013 Dipartimento di Scienze e Tecnolog, University of Salento and CMCC, N7-73100, Piazza Tancredi, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lionello", 
        "givenName": "Piero", 
        "id": "sg:person.016042455431.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042455431.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-05-08", 
    "datePublishedReg": "2013-05-08", 
    "description": "The chapter highlights selected scientific advances made under WCRP leadership in understanding climate variability and predictability at regional scales with emphasis on the monsoon regions. They are mainly related to a better understanding of the physical processes related to the ocean-land-atmosphere interaction that characterize the monsoon variability as well as to a better knowledge of the sources of climate predictability. The chapter also highlights a number of challenges that are considered crucial to improving the ability to simulate and thereby predict regional climate variability. The representation of multi-scale convection and its interaction with coupled modes of tropical variability (where coupling refers both to ocean-atmosphere and/or land-atmosphere coupling) remains the leading problem to be addressed in all aspects of monsoon simulations (intraseasonal to decadal prediction, and to climate change).Systematic errors in the simulation of the mean annual and diurnal cycles continue to be critical issues that reflect fundamental deficiencies in the representation of moist physics and atmosphere/land/ocean coupling. These errors do not appear to be remedied by simple model resolution increases, and they are likely a major impediment to improving the skill of monsoon forecasts at all time scales. Other processes, however, can also play an important role in climate simulation at regional levels. The influence of land cover change requires better quantification. Likewise, aerosol loading resulting from biomass burning, urban activities and land use changes due to agriculture are potentially important climate forcings requiring better understanding and representation in models. More work is also required to elucidate mechanisms that give rise to intraseasonal variability. On longer timescales an improved understanding of interannual to decadal monsoon variability and predictability is required to better understand, attribute and simulate near-term climate change and to assess the potential for interannual and longer monsoon prediction.A need is found to strengthen the links between model evaluation at the applications level and process-oriented refinement of model formulation. Further work is required to develop and sustain effective communication among the observation, model user, and model development communities, as well as between the academic and \u201coperational\u201d model development communities. More research and investment is needed to translate climate data into actionable information at the regional and local scales required for decisions.", 
    "editor": [
      {
        "familyName": "Asrar", 
        "givenName": "Ghassem R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hurrell", 
        "givenName": "James W.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-6692-1_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-6691-4", 
        "978-94-007-6692-1"
      ], 
      "name": "Climate Science for Serving Society", 
      "type": "Book"
    }, 
    "keywords": [
      "model development community", 
      "climate variability", 
      "monsoon variability", 
      "monsoon region", 
      "near-term climate change", 
      "regional climate variability", 
      "model resolution increases", 
      "land cover change", 
      "land use change", 
      "ocean coupling", 
      "climate predictability", 
      "tropical variability", 
      "monsoon simulation", 
      "monsoon forecasts", 
      "climate simulations", 
      "intraseasonal variability", 
      "monsoon prediction", 
      "climate forcings", 
      "atmosphere interactions", 
      "biomass burning", 
      "moist physics", 
      "diurnal cycle", 
      "climate data", 
      "regional scale", 
      "longer timescales", 
      "climate change", 
      "cover change", 
      "physical processes", 
      "resolution increases", 
      "use change", 
      "local scale", 
      "time scales", 
      "model evaluation", 
      "urban activities", 
      "better quantification", 
      "variability", 
      "model formulation", 
      "predictability", 
      "systematic errors", 
      "improved understanding", 
      "better understanding", 
      "forcing", 
      "model users", 
      "scale", 
      "timescales", 
      "forecasts", 
      "region", 
      "convection", 
      "burning", 
      "changes", 
      "regional level", 
      "simulations", 
      "more work", 
      "understanding", 
      "source", 
      "further work", 
      "cycle", 
      "agriculture", 
      "rise", 
      "error", 
      "scientific advances", 
      "process", 
      "good knowledge", 
      "important role", 
      "community", 
      "prediction", 
      "data", 
      "physics", 
      "influence", 
      "model", 
      "actionable information", 
      "quantification", 
      "representation", 
      "loading", 
      "major impediment", 
      "highlights", 
      "fundamental deficiencies", 
      "increase", 
      "link", 
      "interaction", 
      "development community", 
      "coupling", 
      "levels", 
      "advances", 
      "information", 
      "mode", 
      "potential", 
      "activity", 
      "work", 
      "critical issue", 
      "refinement", 
      "emphasis", 
      "number of challenges", 
      "mechanism", 
      "role", 
      "more research", 
      "skills", 
      "knowledge", 
      "chapter highlights", 
      "aspects", 
      "research", 
      "evaluation", 
      "impediments", 
      "chapter", 
      "number", 
      "need", 
      "challenges", 
      "ability", 
      "issues", 
      "formulation", 
      "problem", 
      "deficiency", 
      "application level", 
      "decisions", 
      "effective communication", 
      "investment", 
      "users", 
      "communication", 
      "observations", 
      "leadership"
    ], 
    "name": "Understanding and Predicting Climate Variability and Change at Monsoon Regions", 
    "pagination": "273-306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024955848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-6692-1_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-6692-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1024955848"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_48.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-6692-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-6692-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-6692-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-6692-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-6692-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

286 TRIPLES      22 PREDICATES      144 URIs      136 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-6692-1_11 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N68eb943784b04e11a0d415fdc715c1e4
5 schema:datePublished 2013-05-08
6 schema:datePublishedReg 2013-05-08
7 schema:description The chapter highlights selected scientific advances made under WCRP leadership in understanding climate variability and predictability at regional scales with emphasis on the monsoon regions. They are mainly related to a better understanding of the physical processes related to the ocean-land-atmosphere interaction that characterize the monsoon variability as well as to a better knowledge of the sources of climate predictability. The chapter also highlights a number of challenges that are considered crucial to improving the ability to simulate and thereby predict regional climate variability. The representation of multi-scale convection and its interaction with coupled modes of tropical variability (where coupling refers both to ocean-atmosphere and/or land-atmosphere coupling) remains the leading problem to be addressed in all aspects of monsoon simulations (intraseasonal to decadal prediction, and to climate change).Systematic errors in the simulation of the mean annual and diurnal cycles continue to be critical issues that reflect fundamental deficiencies in the representation of moist physics and atmosphere/land/ocean coupling. These errors do not appear to be remedied by simple model resolution increases, and they are likely a major impediment to improving the skill of monsoon forecasts at all time scales. Other processes, however, can also play an important role in climate simulation at regional levels. The influence of land cover change requires better quantification. Likewise, aerosol loading resulting from biomass burning, urban activities and land use changes due to agriculture are potentially important climate forcings requiring better understanding and representation in models. More work is also required to elucidate mechanisms that give rise to intraseasonal variability. On longer timescales an improved understanding of interannual to decadal monsoon variability and predictability is required to better understand, attribute and simulate near-term climate change and to assess the potential for interannual and longer monsoon prediction.A need is found to strengthen the links between model evaluation at the applications level and process-oriented refinement of model formulation. Further work is required to develop and sustain effective communication among the observation, model user, and model development communities, as well as between the academic and “operational” model development communities. More research and investment is needed to translate climate data into actionable information at the regional and local scales required for decisions.
8 schema:editor N5a2064458c564ba5814fea42274d74d3
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndedbaa129b214d7aa4e49fc2cfd691f2
12 schema:keywords ability
13 actionable information
14 activity
15 advances
16 agriculture
17 application level
18 aspects
19 atmosphere interactions
20 better quantification
21 better understanding
22 biomass burning
23 burning
24 challenges
25 changes
26 chapter
27 chapter highlights
28 climate change
29 climate data
30 climate forcings
31 climate predictability
32 climate simulations
33 climate variability
34 communication
35 community
36 convection
37 coupling
38 cover change
39 critical issue
40 cycle
41 data
42 decisions
43 deficiency
44 development community
45 diurnal cycle
46 effective communication
47 emphasis
48 error
49 evaluation
50 forcing
51 forecasts
52 formulation
53 fundamental deficiencies
54 further work
55 good knowledge
56 highlights
57 impediments
58 important role
59 improved understanding
60 increase
61 influence
62 information
63 interaction
64 intraseasonal variability
65 investment
66 issues
67 knowledge
68 land cover change
69 land use change
70 leadership
71 levels
72 link
73 loading
74 local scale
75 longer timescales
76 major impediment
77 mechanism
78 mode
79 model
80 model development community
81 model evaluation
82 model formulation
83 model resolution increases
84 model users
85 moist physics
86 monsoon forecasts
87 monsoon prediction
88 monsoon region
89 monsoon simulation
90 monsoon variability
91 more research
92 more work
93 near-term climate change
94 need
95 number
96 number of challenges
97 observations
98 ocean coupling
99 physical processes
100 physics
101 potential
102 predictability
103 prediction
104 problem
105 process
106 quantification
107 refinement
108 region
109 regional climate variability
110 regional level
111 regional scale
112 representation
113 research
114 resolution increases
115 rise
116 role
117 scale
118 scientific advances
119 simulations
120 skills
121 source
122 systematic errors
123 time scales
124 timescales
125 tropical variability
126 understanding
127 urban activities
128 use change
129 users
130 variability
131 work
132 schema:name Understanding and Predicting Climate Variability and Change at Monsoon Regions
133 schema:pagination 273-306
134 schema:productId N59a83a5bb7b046a4af90e155284ba9ae
135 N7d88fe517b9145b7be42599b0d2cc849
136 schema:publisher N03c54622fb0c43bbb50527d299ebb768
137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024955848
138 https://doi.org/10.1007/978-94-007-6692-1_11
139 schema:sdDatePublished 2022-12-01T06:54
140 schema:sdLicense https://scigraph.springernature.com/explorer/license/
141 schema:sdPublisher Ne31b8678f46a419586517c418d0aa3ec
142 schema:url https://doi.org/10.1007/978-94-007-6692-1_11
143 sgo:license sg:explorer/license/
144 sgo:sdDataset chapters
145 rdf:type schema:Chapter
146 N03c54622fb0c43bbb50527d299ebb768 schema:name Springer Nature
147 rdf:type schema:Organisation
148 N060d0888bf7846f29f60293919bbd234 rdf:first sg:person.012424720345.14
149 rdf:rest Nc89c10d6020146468a9174178828aa15
150 N22667fe41ddb4dd1ae80c4f3c040f392 rdf:first N5e714814612944d089447c2c3923ae45
151 rdf:rest N81eec04e1de64b70ae41e3e6512cbe11
152 N24d872ea97de4ccfb74ac827784fa628 rdf:first sg:person.011545135005.98
153 rdf:rest N22667fe41ddb4dd1ae80c4f3c040f392
154 N39f2382020fc4a8884b2cc1a612e669f schema:familyName Hurrell
155 schema:givenName James W.
156 rdf:type schema:Person
157 N59a83a5bb7b046a4af90e155284ba9ae schema:name dimensions_id
158 schema:value pub.1024955848
159 rdf:type schema:PropertyValue
160 N5a2064458c564ba5814fea42274d74d3 rdf:first N5d0d3d0e55f6478c8014fe2fa5cc4244
161 rdf:rest N71552b0df1b84ebdb4400cef7e9ac1d3
162 N5d0d3d0e55f6478c8014fe2fa5cc4244 schema:familyName Asrar
163 schema:givenName Ghassem R.
164 rdf:type schema:Person
165 N5e714814612944d089447c2c3923ae45 schema:affiliation grid-institutes:grid.7836.a
166 schema:familyName Reason
167 schema:givenName Chris C.
168 rdf:type schema:Person
169 N606d568748c24f478f9d63b2083e99e0 rdf:first sg:person.010605677641.29
170 rdf:rest N060d0888bf7846f29f60293919bbd234
171 N68eb943784b04e11a0d415fdc715c1e4 rdf:first sg:person.015347174377.35
172 rdf:rest Nb95a7d7b91a44e2eaacdcdb8b436dc70
173 N71552b0df1b84ebdb4400cef7e9ac1d3 rdf:first N39f2382020fc4a8884b2cc1a612e669f
174 rdf:rest rdf:nil
175 N7d88fe517b9145b7be42599b0d2cc849 schema:name doi
176 schema:value 10.1007/978-94-007-6692-1_11
177 rdf:type schema:PropertyValue
178 N81eec04e1de64b70ae41e3e6512cbe11 rdf:first sg:person.014541216226.71
179 rdf:rest Nf2c18d1915ad4a8c8e8dc78f9572bb33
180 Na3e89c1f69cf4468a9664cd49402fe2c rdf:first sg:person.01356063664.43
181 rdf:rest N24d872ea97de4ccfb74ac827784fa628
182 Nb95a7d7b91a44e2eaacdcdb8b436dc70 rdf:first sg:person.013166424105.12
183 rdf:rest Na3e89c1f69cf4468a9664cd49402fe2c
184 Nc89c10d6020146468a9174178828aa15 rdf:first sg:person.07561752345.66
185 rdf:rest Ncdb8ff223cac4375a989de863c2097d0
186 Ncdb8ff223cac4375a989de863c2097d0 rdf:first sg:person.016042455431.30
187 rdf:rest rdf:nil
188 Ndedbaa129b214d7aa4e49fc2cfd691f2 schema:isbn 978-94-007-6691-4
189 978-94-007-6692-1
190 schema:name Climate Science for Serving Society
191 rdf:type schema:Book
192 Ne31b8678f46a419586517c418d0aa3ec schema:name Springer Nature - SN SciGraph project
193 rdf:type schema:Organization
194 Nf2c18d1915ad4a8c8e8dc78f9572bb33 rdf:first sg:person.014674460013.11
195 rdf:rest N606d568748c24f478f9d63b2083e99e0
196 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
197 schema:name Earth Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
200 schema:name Atmospheric Sciences
201 rdf:type schema:DefinedTerm
202 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
203 schema:name Oceanography
204 rdf:type schema:DefinedTerm
205 sg:person.010605677641.29 schema:affiliation grid-institutes:grid.7836.a
206 schema:familyName Hewitson
207 schema:givenName Bruce
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605677641.29
209 rdf:type schema:Person
210 sg:person.011545135005.98 schema:affiliation grid-institutes:grid.417983.0
211 schema:familyName Goswami
212 schema:givenName B. N.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545135005.98
214 rdf:type schema:Person
215 sg:person.012424720345.14 schema:affiliation grid-institutes:grid.473897.6
216 schema:familyName Hendon
217 schema:givenName Harry
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424720345.14
219 rdf:type schema:Person
220 sg:person.013166424105.12 schema:affiliation grid-institutes:grid.34421.30
221 schema:familyName Gutowski
222 schema:givenName William
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166424105.12
224 rdf:type schema:Person
225 sg:person.01356063664.43 schema:affiliation grid-institutes:grid.19006.3e
226 schema:familyName Mechoso
227 schema:givenName Carlos R.
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356063664.43
229 rdf:type schema:Person
230 sg:person.014541216226.71 schema:affiliation grid-institutes:grid.265850.c
231 schema:familyName Thorncroft
232 schema:givenName Chris D.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541216226.71
234 rdf:type schema:Person
235 sg:person.014674460013.11 schema:affiliation grid-institutes:None
236 schema:familyName Marengo
237 schema:givenName Jose Antonio
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674460013.11
239 rdf:type schema:Person
240 sg:person.015347174377.35 schema:affiliation grid-institutes:grid.482261.b
241 schema:familyName Vera
242 schema:givenName Carolina
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015347174377.35
244 rdf:type schema:Person
245 sg:person.016042455431.30 schema:affiliation grid-institutes:grid.9906.6
246 schema:familyName Lionello
247 schema:givenName Piero
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042455431.30
249 rdf:type schema:Person
250 sg:person.07561752345.66 schema:affiliation grid-institutes:grid.6057.4
251 schema:familyName Jones
252 schema:givenName Colin
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561752345.66
254 rdf:type schema:Person
255 grid-institutes:None schema:alternateName Centro de Ciencia do Sistema Terrestre (CCST), INPE, São Paulo, Brazil
256 schema:name Centro de Ciencia do Sistema Terrestre (CCST), INPE, São Paulo, Brazil
257 rdf:type schema:Organization
258 grid-institutes:grid.19006.3e schema:alternateName Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), 7127 Math Sciences Building, 405 Hilgard Avenue, 90095-1565, Los Angeles, CA, USA
259 schema:name Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), 7127 Math Sciences Building, 405 Hilgard Avenue, 90095-1565, Los Angeles, CA, USA
260 rdf:type schema:Organization
261 grid-institutes:grid.265850.c schema:alternateName Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, DAES – ES351, 12222, Albany, NY, USA
262 schema:name Department of Atmospheric and Environmental Sciences, University at Albany, SUNY, DAES – ES351, 12222, Albany, NY, USA
263 rdf:type schema:Organization
264 grid-institutes:grid.34421.30 schema:alternateName Department of Geological & Atmospheric Sciences, Department of Agronomy, Iowa State University, 3021 Agronomy, 50011, Ames, IA, USA
265 schema:name Department of Geological & Atmospheric Sciences, Department of Agronomy, Iowa State University, 3021 Agronomy, 50011, Ames, IA, USA
266 rdf:type schema:Organization
267 grid-institutes:grid.417983.0 schema:alternateName Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., 411008, Pashan, Pune, India
268 schema:name Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Rd., 411008, Pashan, Pune, India
269 rdf:type schema:Organization
270 grid-institutes:grid.473897.6 schema:alternateName Centre for Australian Weather and Climate Research, Bureau of Meteorology, 1289, 3001, Melbourne, VIC, Australia
271 schema:name Centre for Australian Weather and Climate Research, Bureau of Meteorology, 1289, 3001, Melbourne, VIC, Australia
272 rdf:type schema:Organization
273 grid-institutes:grid.482261.b schema:alternateName Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Intendente Guiraldes 2160 – Ciudad Universitaria, Pabellón II – 2do. piso, C1428EGA, Buenos Aires, Argentina
274 schema:name Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Intendente Guiraldes 2160 – Ciudad Universitaria, Pabellón II – 2do. piso, C1428EGA, Buenos Aires, Argentina
275 rdf:type schema:Organization
276 grid-institutes:grid.6057.4 schema:alternateName Rossby Center, Swedish Meteorological and Hydrological Institute, SE-601 76, Norrköping, Sweden
277 schema:name Rossby Center, Swedish Meteorological and Hydrological Institute, SE-601 76, Norrköping, Sweden
278 rdf:type schema:Organization
279 grid-institutes:grid.7836.a schema:alternateName Department of Environmental & Geographical Science, Climate Systems Analysis Group (CSAG), University of Cape Town, 7701, Rondebosch, RSA, South Africa
280 Department of Oceanography, University of Cape Town, X3, 7701, Rondebosch, Cape Town, South Africa
281 schema:name Department of Environmental & Geographical Science, Climate Systems Analysis Group (CSAG), University of Cape Town, 7701, Rondebosch, RSA, South Africa
282 Department of Oceanography, University of Cape Town, X3, 7701, Rondebosch, Cape Town, South Africa
283 rdf:type schema:Organization
284 grid-institutes:grid.9906.6 schema:alternateName Università del Salento – Dipartimento di Scienze e Tecnolog, University of Salento and CMCC, N7-73100, Piazza Tancredi, Lecce, Italy
285 schema:name Università del Salento – Dipartimento di Scienze e Tecnolog, University of Salento and CMCC, N7-73100, Piazza Tancredi, Lecce, Italy
286 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...