Evaluation of a Year-Long Ozone Hindcast for 2006 as Part of a DEFRA Model Intercomparison View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013-05-07

AUTHORS

Robert Thorpe , Nicholas Savage , Lucy Davis , Paul Agnew

ABSTRACT

A variant of the operational forecast configuration of the Met Office’s newly developed Eulerian Air Quality Forecast Model was used to generate an air quality hindcast for 2006 as part of a DEFRA model intercomparison. Verification of predicted ozone concentrations was carried out by comparing against hourly observations from 15 rural and urban background sites spread over the UK. Models were primarily assessed statistically using standard metrics including bias, mean error, correlation, and fraction of predictions within a factor of 2 of observations for (a) all observations, and (b) periods of elevated ozone (>100 μg/m3). We will present results showing that the Met Office model is competitive with other models for hourly ozone, but is best in class at modelling episodes of elevated ozone. The results indicate that the availability of high quality met data and interactive treatment of chemistry and meteorology are both important in modelling ozone episodes. More... »

PAGES

469-473

Book

TITLE

Air Pollution Modeling and its Application XXII

ISBN

978-94-007-5576-5
978-94-007-5577-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-5577-2_79

DOI

http://dx.doi.org/10.1007/978-94-007-5577-2_79

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007643547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorpe", 
        "givenName": "Robert", 
        "id": "sg:person.016062355675.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062355675.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savage", 
        "givenName": "Nicholas", 
        "id": "sg:person.012245754072.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245754072.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davis", 
        "givenName": "Lucy", 
        "id": "sg:person.010545017737.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545017737.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agnew", 
        "givenName": "Paul", 
        "id": "sg:person.010337263475.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337263475.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-05-07", 
    "datePublishedReg": "2013-05-07", 
    "description": "A variant of the operational forecast configuration of the Met Office\u2019s newly developed Eulerian Air Quality Forecast Model was used to generate an air quality hindcast for 2006 as part of a DEFRA model intercomparison. Verification of predicted ozone concentrations was carried out by comparing against hourly observations from 15 rural and urban background sites spread over the UK. Models were primarily assessed statistically using standard metrics including bias, mean error, correlation, and fraction of predictions within a factor of 2 of observations for (a) all observations, and (b) periods of elevated ozone (>100 \u03bcg/m3). We will present results showing that the Met Office model is competitive with other models for hourly ozone, but is best in class at modelling episodes of elevated ozone. The results indicate that the availability of high quality met data and interactive treatment of chemistry and meteorology are both important in modelling ozone episodes.", 
    "editor": [
      {
        "familyName": "Steyn", 
        "givenName": "Douw G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Builtjes", 
        "givenName": "Peter J.H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Timmermans", 
        "givenName": "Renske M.A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-5577-2_79", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-5576-5", 
        "978-94-007-5577-2"
      ], 
      "name": "Air Pollution Modeling and its Application XXII", 
      "type": "Book"
    }, 
    "keywords": [
      "model intercomparison", 
      "air quality forecast model", 
      "Met Office model", 
      "air quality hindcasts", 
      "elevated ozone", 
      "urban background site", 
      "fraction of predictions", 
      "hourly ozone", 
      "Met Office", 
      "ozone episodes", 
      "background site", 
      "hourly observations", 
      "forecast model", 
      "ozone concentrations", 
      "office model", 
      "hindcasts", 
      "ozone", 
      "interactive treatment", 
      "intercomparison", 
      "mean error", 
      "meteorology", 
      "episodes", 
      "part", 
      "chemistry", 
      "model", 
      "period", 
      "sites", 
      "standard metrics", 
      "concentration", 
      "prediction", 
      "fraction", 
      "bias", 
      "data", 
      "availability", 
      "correlation", 
      "error", 
      "results", 
      "UK", 
      "verification", 
      "metrics", 
      "quality", 
      "high quality", 
      "configuration", 
      "factors", 
      "evaluation", 
      "office", 
      "class", 
      "variants", 
      "treatment", 
      "observations"
    ], 
    "name": "Evaluation of a Year-Long Ozone Hindcast for 2006 as Part of a DEFRA Model Intercomparison", 
    "pagination": "469-473", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007643547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-5577-2_79"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-5577-2_79", 
      "https://app.dimensions.ai/details/publication/pub.1007643547"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_229.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-5577-2_79"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5577-2_79'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5577-2_79'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5577-2_79'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5577-2_79'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-5577-2_79 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N65ce8be928694421bb0bf648eabd0448
4 schema:datePublished 2013-05-07
5 schema:datePublishedReg 2013-05-07
6 schema:description A variant of the operational forecast configuration of the Met Office’s newly developed Eulerian Air Quality Forecast Model was used to generate an air quality hindcast for 2006 as part of a DEFRA model intercomparison. Verification of predicted ozone concentrations was carried out by comparing against hourly observations from 15 rural and urban background sites spread over the UK. Models were primarily assessed statistically using standard metrics including bias, mean error, correlation, and fraction of predictions within a factor of 2 of observations for (a) all observations, and (b) periods of elevated ozone (>100 μg/m3). We will present results showing that the Met Office model is competitive with other models for hourly ozone, but is best in class at modelling episodes of elevated ozone. The results indicate that the availability of high quality met data and interactive treatment of chemistry and meteorology are both important in modelling ozone episodes.
7 schema:editor Nd819667a80694dfdba807c902e04f4aa
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6363d3834ed849928cfd25a206964685
11 schema:keywords Met Office
12 Met Office model
13 UK
14 air quality forecast model
15 air quality hindcasts
16 availability
17 background site
18 bias
19 chemistry
20 class
21 concentration
22 configuration
23 correlation
24 data
25 elevated ozone
26 episodes
27 error
28 evaluation
29 factors
30 forecast model
31 fraction
32 fraction of predictions
33 high quality
34 hindcasts
35 hourly observations
36 hourly ozone
37 interactive treatment
38 intercomparison
39 mean error
40 meteorology
41 metrics
42 model
43 model intercomparison
44 observations
45 office
46 office model
47 ozone
48 ozone concentrations
49 ozone episodes
50 part
51 period
52 prediction
53 quality
54 results
55 sites
56 standard metrics
57 treatment
58 urban background site
59 variants
60 verification
61 schema:name Evaluation of a Year-Long Ozone Hindcast for 2006 as Part of a DEFRA Model Intercomparison
62 schema:pagination 469-473
63 schema:productId N089c96120fd740b4967e4adabb6cdf4f
64 N3b618913021645f7a27adfe933d6cde6
65 schema:publisher Naf132c450c4a4f8ca7c209ddd66e3fc8
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007643547
67 https://doi.org/10.1007/978-94-007-5577-2_79
68 schema:sdDatePublished 2022-12-01T06:49
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N9415fe9fb9d94282a959a86c77cc62e3
71 schema:url https://doi.org/10.1007/978-94-007-5577-2_79
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N089c96120fd740b4967e4adabb6cdf4f schema:name dimensions_id
76 schema:value pub.1007643547
77 rdf:type schema:PropertyValue
78 N0f3d8505a73a463dabeb853581c382b5 rdf:first N27f317781a3c4fc983db54c7e908b0c3
79 rdf:rest N6a45389d3e9d4ec091a64c51d5878e3c
80 N27f317781a3c4fc983db54c7e908b0c3 schema:familyName Builtjes
81 schema:givenName Peter J.H.
82 rdf:type schema:Person
83 N3b618913021645f7a27adfe933d6cde6 schema:name doi
84 schema:value 10.1007/978-94-007-5577-2_79
85 rdf:type schema:PropertyValue
86 N62386f8469184da38c07ba27e9df8e42 schema:familyName Steyn
87 schema:givenName Douw G.
88 rdf:type schema:Person
89 N6363d3834ed849928cfd25a206964685 schema:isbn 978-94-007-5576-5
90 978-94-007-5577-2
91 schema:name Air Pollution Modeling and its Application XXII
92 rdf:type schema:Book
93 N65ce8be928694421bb0bf648eabd0448 rdf:first sg:person.016062355675.66
94 rdf:rest N904db4ec0dfd4676aadfdebb8ff1bf2d
95 N6a45389d3e9d4ec091a64c51d5878e3c rdf:first N71fef5b39b324c69bb4655a4f6b73516
96 rdf:rest rdf:nil
97 N71fef5b39b324c69bb4655a4f6b73516 schema:familyName Timmermans
98 schema:givenName Renske M.A.
99 rdf:type schema:Person
100 N904db4ec0dfd4676aadfdebb8ff1bf2d rdf:first sg:person.012245754072.10
101 rdf:rest Nce9428ace6924505a29471c20da06eb9
102 N9415fe9fb9d94282a959a86c77cc62e3 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Naf132c450c4a4f8ca7c209ddd66e3fc8 schema:name Springer Nature
105 rdf:type schema:Organisation
106 Nce9428ace6924505a29471c20da06eb9 rdf:first sg:person.010545017737.17
107 rdf:rest Nea176fe590284b72a56cba03e5b21d32
108 Nd819667a80694dfdba807c902e04f4aa rdf:first N62386f8469184da38c07ba27e9df8e42
109 rdf:rest N0f3d8505a73a463dabeb853581c382b5
110 Nea176fe590284b72a56cba03e5b21d32 rdf:first sg:person.010337263475.50
111 rdf:rest rdf:nil
112 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
113 schema:name Earth Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
116 schema:name Atmospheric Sciences
117 rdf:type schema:DefinedTerm
118 sg:person.010337263475.50 schema:affiliation grid-institutes:grid.17100.37
119 schema:familyName Agnew
120 schema:givenName Paul
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337263475.50
122 rdf:type schema:Person
123 sg:person.010545017737.17 schema:affiliation grid-institutes:grid.17100.37
124 schema:familyName Davis
125 schema:givenName Lucy
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545017737.17
127 rdf:type schema:Person
128 sg:person.012245754072.10 schema:affiliation grid-institutes:grid.17100.37
129 schema:familyName Savage
130 schema:givenName Nicholas
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245754072.10
132 rdf:type schema:Person
133 sg:person.016062355675.66 schema:affiliation grid-institutes:grid.17100.37
134 schema:familyName Thorpe
135 schema:givenName Robert
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062355675.66
137 rdf:type schema:Person
138 grid-institutes:grid.17100.37 schema:alternateName UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK
139 schema:name UK Met Office, 1 FitzRoy Road, X1 3PB, Exeter, UK
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...