Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012-10-30

AUTHORS

Yang Wang , Bogdan Georgescu , Terrence Chen , Wen Wu , Peng Wang , Xiaoguang Lu , Razvan Ionasec , Yefeng Zheng , Dorin Comaniciu

ABSTRACT

Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy. More... »

PAGES

209-235

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9

DOI

http://dx.doi.org/10.1007/978-94-007-5446-1_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046552752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Terrence", 
        "id": "sg:person.0753267612.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wen", 
        "id": "sg:person.012360474011.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Peng", 
        "id": "sg:person.0705154412.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705154412.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-10-30", 
    "datePublishedReg": "2012-10-30", 
    "description": "Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.", 
    "editor": [
      {
        "familyName": "Gonz\u00e1lez Hidalgo", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Mir Torres", 
        "givenName": "Arnau", 
        "type": "Person"
      }, 
      {
        "familyName": "Varona G\u00f3mez", 
        "givenName": "Javier", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-5446-1_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-94-007-5445-4", 
        "978-94-007-5446-1"
      ], 
      "name": "Deformation Models", 
      "type": "Book"
    }, 
    "keywords": [
      "Learning-Based Detection", 
      "medical image processing tools", 
      "medical image analysis applications", 
      "medical image analysis", 
      "target appearance", 
      "image analysis applications", 
      "traditional tracking approaches", 
      "image processing tools", 
      "image classifier", 
      "image-guided interventions", 
      "domain knowledge", 
      "object model", 
      "template matching", 
      "catheter detection", 
      "tracking approach", 
      "analysis applications", 
      "anatomical objects", 
      "processing tools", 
      "crucial task", 
      "device movement", 
      "probabilistic framework", 
      "motion model", 
      "imaging database", 
      "medical imaging", 
      "structure tracking", 
      "shape model", 
      "deformable targets", 
      "prior information", 
      "tracking", 
      "fast tracking", 
      "multiple modalities", 
      "main challenges", 
      "consistent representation", 
      "probabilistic approach", 
      "image analysis", 
      "ray fluoroscopy", 
      "target movement", 
      "therapy planning", 
      "sources of information", 
      "temporal trajectories", 
      "framework", 
      "expert clinical knowledge", 
      "information", 
      "classifier", 
      "matching", 
      "objects", 
      "task", 
      "challenges", 
      "detection", 
      "registration", 
      "database", 
      "representation", 
      "clinical knowledge", 
      "model", 
      "knowledge", 
      "planning", 
      "tool", 
      "applications", 
      "trajectories", 
      "inherent changes", 
      "auto", 
      "movement", 
      "cardiac computed tomography", 
      "focus", 
      "important role", 
      "chapter", 
      "imaging", 
      "modalities", 
      "magnetic resonance imaging", 
      "source", 
      "analysis", 
      "appearance", 
      "cardiac chambers", 
      "target", 
      "fluoroscopy", 
      "computed tomography", 
      "chamber", 
      "cardiology", 
      "resonance imaging", 
      "conditions", 
      "tomography", 
      "approach", 
      "ultrasound", 
      "diagnosis", 
      "heart", 
      "clinicians", 
      "role", 
      "changes", 
      "intervention", 
      "deformable anatomical objects", 
      "domain expert clinical knowledge", 
      "component-based object models", 
      "Large annotated imaging databases", 
      "annotated imaging databases", 
      "discriminative image classifiers", 
      "complex cardiac structure tracking", 
      "cardiac structure tracking"
    ], 
    "name": "Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach", 
    "pagination": "209-235", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046552752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-5446-1_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-5446-1_9", 
      "https://app.dimensions.ai/details/publication/pub.1046552752"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_392.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-5446-1_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      23 PREDICATES      126 URIs      114 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-5446-1_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:09
5 anzsrc-for:0903
6 anzsrc-for:11
7 anzsrc-for:1102
8 schema:author Nb1c4886e3d434794ad295d94bee4d54d
9 schema:datePublished 2012-10-30
10 schema:datePublishedReg 2012-10-30
11 schema:description Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.
12 schema:editor N34c573e2a8354dae8d24f3dfd28edc65
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N62b38f72c17b48f9b03641abd1b6932e
17 schema:keywords Large annotated imaging databases
18 Learning-Based Detection
19 analysis
20 analysis applications
21 anatomical objects
22 annotated imaging databases
23 appearance
24 applications
25 approach
26 auto
27 cardiac chambers
28 cardiac computed tomography
29 cardiac structure tracking
30 cardiology
31 catheter detection
32 challenges
33 chamber
34 changes
35 chapter
36 classifier
37 clinical knowledge
38 clinicians
39 complex cardiac structure tracking
40 component-based object models
41 computed tomography
42 conditions
43 consistent representation
44 crucial task
45 database
46 deformable anatomical objects
47 deformable targets
48 detection
49 device movement
50 diagnosis
51 discriminative image classifiers
52 domain expert clinical knowledge
53 domain knowledge
54 expert clinical knowledge
55 fast tracking
56 fluoroscopy
57 focus
58 framework
59 heart
60 image analysis
61 image analysis applications
62 image classifier
63 image processing tools
64 image-guided interventions
65 imaging
66 imaging database
67 important role
68 information
69 inherent changes
70 intervention
71 knowledge
72 magnetic resonance imaging
73 main challenges
74 matching
75 medical image analysis
76 medical image analysis applications
77 medical image processing tools
78 medical imaging
79 modalities
80 model
81 motion model
82 movement
83 multiple modalities
84 object model
85 objects
86 planning
87 prior information
88 probabilistic approach
89 probabilistic framework
90 processing tools
91 ray fluoroscopy
92 registration
93 representation
94 resonance imaging
95 role
96 shape model
97 source
98 sources of information
99 structure tracking
100 target
101 target appearance
102 target movement
103 task
104 template matching
105 temporal trajectories
106 therapy planning
107 tomography
108 tool
109 tracking
110 tracking approach
111 traditional tracking approaches
112 trajectories
113 ultrasound
114 schema:name Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach
115 schema:pagination 209-235
116 schema:productId N62ea8dd00b4242ac86deccf6e41d9d05
117 N837d0ff7ae0d4212ba3efbfafb1d1be9
118 schema:publisher N7a1859872d9046de9c7842bb78f9cc1f
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046552752
120 https://doi.org/10.1007/978-94-007-5446-1_9
121 schema:sdDatePublished 2022-01-01T19:23
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N486f87afafb14e1cb9685d2ed222fd0a
124 schema:url https://doi.org/10.1007/978-94-007-5446-1_9
125 sgo:license sg:explorer/license/
126 sgo:sdDataset chapters
127 rdf:type schema:Chapter
128 N04cf453e497849b68bd5a95e92f09a5f schema:familyName Mir Torres
129 schema:givenName Arnau
130 rdf:type schema:Person
131 N123734fd08ab43c5a6febda13a1d0264 rdf:first N350ded4a5ec24abe9cdf042bebc79455
132 rdf:rest rdf:nil
133 N1d2d9dd28a434a5c88d84f9c98cbebd5 rdf:first sg:person.012360474011.61
134 rdf:rest Nb94fe673f31f4cf0875a0b1f0fa14f1b
135 N244dad4addc44f3ab3198ebf47581706 rdf:first sg:person.01010560470.38
136 rdf:rest Na6909b7a185a4560be4af463164d1fe2
137 N34c573e2a8354dae8d24f3dfd28edc65 rdf:first Nb04c67cb768b4c628790e54366e2fb14
138 rdf:rest N83cede4a3b2c47a493319b0a87aa4a5f
139 N350ded4a5ec24abe9cdf042bebc79455 schema:familyName Varona Gómez
140 schema:givenName Javier
141 rdf:type schema:Person
142 N486f87afafb14e1cb9685d2ed222fd0a schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N62b38f72c17b48f9b03641abd1b6932e schema:isbn 978-94-007-5445-4
145 978-94-007-5446-1
146 schema:name Deformation Models
147 rdf:type schema:Book
148 N62ea8dd00b4242ac86deccf6e41d9d05 schema:name doi
149 schema:value 10.1007/978-94-007-5446-1_9
150 rdf:type schema:PropertyValue
151 N69832740f5f64ac4a7ac03870ca64c0f rdf:first sg:person.0753267612.06
152 rdf:rest N1d2d9dd28a434a5c88d84f9c98cbebd5
153 N7099a240aef34ca588451a24feff83fb rdf:first sg:person.0656702353.18
154 rdf:rest N244dad4addc44f3ab3198ebf47581706
155 N7a1859872d9046de9c7842bb78f9cc1f schema:name Springer Nature
156 rdf:type schema:Organisation
157 N837d0ff7ae0d4212ba3efbfafb1d1be9 schema:name dimensions_id
158 schema:value pub.1046552752
159 rdf:type schema:PropertyValue
160 N83cede4a3b2c47a493319b0a87aa4a5f rdf:first N04cf453e497849b68bd5a95e92f09a5f
161 rdf:rest N123734fd08ab43c5a6febda13a1d0264
162 Na6909b7a185a4560be4af463164d1fe2 rdf:first sg:person.0767211426.21
163 rdf:rest Nb8e85f9b35b444f0a4b1d53ed6297d71
164 Nb04c67cb768b4c628790e54366e2fb14 schema:familyName González Hidalgo
165 schema:givenName Manuel
166 rdf:type schema:Person
167 Nb1c4886e3d434794ad295d94bee4d54d rdf:first sg:person.01356704511.13
168 rdf:rest Nb7ebb3cf74214f70af284465a9adc952
169 Nb7ebb3cf74214f70af284465a9adc952 rdf:first sg:person.0703547214.37
170 rdf:rest N69832740f5f64ac4a7ac03870ca64c0f
171 Nb8e85f9b35b444f0a4b1d53ed6297d71 rdf:first sg:person.01066111014.77
172 rdf:rest rdf:nil
173 Nb94fe673f31f4cf0875a0b1f0fa14f1b rdf:first sg:person.0705154412.76
174 rdf:rest N7099a240aef34ca588451a24feff83fb
175 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
176 schema:name Information and Computing Sciences
177 rdf:type schema:DefinedTerm
178 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
179 schema:name Artificial Intelligence and Image Processing
180 rdf:type schema:DefinedTerm
181 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
182 schema:name Information Systems
183 rdf:type schema:DefinedTerm
184 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
185 schema:name Engineering
186 rdf:type schema:DefinedTerm
187 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biomedical Engineering
189 rdf:type schema:DefinedTerm
190 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
191 schema:name Medical and Health Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
194 schema:name Cardiorespiratory Medicine and Haematology
195 rdf:type schema:DefinedTerm
196 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
197 schema:familyName Ionasec
198 schema:givenName Razvan
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
200 rdf:type schema:Person
201 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
202 schema:familyName Comaniciu
203 schema:givenName Dorin
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
205 rdf:type schema:Person
206 sg:person.012360474011.61 schema:affiliation grid-institutes:grid.419233.e
207 schema:familyName Wu
208 schema:givenName Wen
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61
210 rdf:type schema:Person
211 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
212 schema:familyName Wang
213 schema:givenName Yang
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
215 rdf:type schema:Person
216 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
217 schema:familyName Lu
218 schema:givenName Xiaoguang
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
220 rdf:type schema:Person
221 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
222 schema:familyName Georgescu
223 schema:givenName Bogdan
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
225 rdf:type schema:Person
226 sg:person.0705154412.76 schema:affiliation grid-institutes:grid.419233.e
227 schema:familyName Wang
228 schema:givenName Peng
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705154412.76
230 rdf:type schema:Person
231 sg:person.0753267612.06 schema:affiliation grid-institutes:grid.419233.e
232 schema:familyName Chen
233 schema:givenName Terrence
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06
235 rdf:type schema:Person
236 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.419233.e
237 schema:familyName Zheng
238 schema:givenName Yefeng
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
240 rdf:type schema:Person
241 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA
242 schema:name Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...