Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012-10-30

AUTHORS

Yang Wang , Bogdan Georgescu , Terrence Chen , Wen Wu , Peng Wang , Xiaoguang Lu , Razvan Ionasec , Yefeng Zheng , Dorin Comaniciu

ABSTRACT

Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy. More... »

PAGES

209-235

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9

DOI

http://dx.doi.org/10.1007/978-94-007-5446-1_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046552752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Terrence", 
        "id": "sg:person.0753267612.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wen", 
        "id": "sg:person.012360474011.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Peng", 
        "id": "sg:person.0705154412.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705154412.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Xiaoguang", 
        "id": "sg:person.0656702353.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "id": "sg:person.0767211426.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-10-30", 
    "datePublishedReg": "2012-10-30", 
    "description": "Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.", 
    "editor": [
      {
        "familyName": "Gonz\u00e1lez Hidalgo", 
        "givenName": "Manuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Mir Torres", 
        "givenName": "Arnau", 
        "type": "Person"
      }, 
      {
        "familyName": "Varona G\u00f3mez", 
        "givenName": "Javier", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-5446-1_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-94-007-5445-4", 
        "978-94-007-5446-1"
      ], 
      "name": "Deformation Models", 
      "type": "Book"
    }, 
    "keywords": [
      "medical image processing tools", 
      "medical image analysis applications", 
      "Learning-Based Detection", 
      "medical image analysis", 
      "image analysis applications", 
      "target appearance", 
      "image processing tools", 
      "traditional tracking approaches", 
      "image classifier", 
      "domain knowledge", 
      "object model", 
      "catheter detection", 
      "template matching", 
      "analysis applications", 
      "crucial task", 
      "processing tools", 
      "imaging database", 
      "tracking approach", 
      "anatomical objects", 
      "image-guided interventions", 
      "device movement", 
      "probabilistic framework", 
      "medical imaging", 
      "shape model", 
      "multiple modalities", 
      "motion model", 
      "prior information", 
      "main challenges", 
      "consistent representation", 
      "tracking", 
      "deformable targets", 
      "image analysis", 
      "structure tracking", 
      "probabilistic approach", 
      "fast tracking", 
      "sources of information", 
      "target movement", 
      "ray fluoroscopy", 
      "framework", 
      "therapy planning", 
      "classifier", 
      "information", 
      "temporal trajectories", 
      "expert clinical knowledge", 
      "task", 
      "challenges", 
      "matching", 
      "detection", 
      "objects", 
      "clinical knowledge", 
      "registration", 
      "representation", 
      "database", 
      "model", 
      "knowledge", 
      "planning", 
      "tool", 
      "applications", 
      "trajectories", 
      "auto", 
      "inherent changes", 
      "movement", 
      "important role", 
      "focus", 
      "cardiac computed tomography", 
      "chapter", 
      "magnetic resonance imaging", 
      "modalities", 
      "imaging", 
      "source", 
      "appearance", 
      "analysis", 
      "target", 
      "resonance imaging", 
      "computed tomography", 
      "fluoroscopy", 
      "cardiology", 
      "cardiac chambers", 
      "diagnosis", 
      "clinicians", 
      "conditions", 
      "heart", 
      "tomography", 
      "role", 
      "changes", 
      "ultrasound", 
      "intervention", 
      "chamber", 
      "approach"
    ], 
    "name": "Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach", 
    "pagination": "209-235", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046552752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-5446-1_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-5446-1_9", 
      "https://app.dimensions.ai/details/publication/pub.1046552752"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_451.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-5446-1_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5446-1_9'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      23 PREDICATES      118 URIs      106 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-5446-1_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:09
5 anzsrc-for:0903
6 anzsrc-for:11
7 anzsrc-for:1102
8 schema:author N8d142bb2aa104103aefe30fcbcc7220c
9 schema:datePublished 2012-10-30
10 schema:datePublishedReg 2012-10-30
11 schema:description Medical image processing tools are playing an increasingly important role in assisting the clinicians in diagnosis, therapy planning and image-guided interventions. Accurate, robust and fast tracking of deformable anatomical objects, such as the heart, is a crucial task in medical image analysis. One of the main challenges is to maintain an anatomically consistent representation of target appearance that is robust enough to cope with inherent changes due to target movement, imaging device movement, varying imaging conditions, and is consistent with the domain expert clinical knowledge. To address these challenges, this chapter presents a probabilistic framework that relies on anatomically indexed component-based object models which integrate several sources of information to determine the temporal trajectory of the deformable target. Large annotated imaging databases are exploited to encode the domain knowledge in shape models and motion models and to learn discriminative image classifiers for the target appearance. The framework robustly fuses the prior information with traditional tracking approaches based on template matching and registration. We demonstrate various medical image analysis applications with focus on cardiology such as 2D auto left heart, catheter detection and tracking, 3D cardiac chambers surface tracking, and 4D complex cardiac structure tracking, in multiple modalities including Ultrasound (US), cardiac Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and X-ray fluoroscopy.
12 schema:editor Ne2ecafdf779a466caae0c9751e90f343
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N2c3282af8e02478fad6c2216106b4758
17 schema:keywords Learning-Based Detection
18 analysis
19 analysis applications
20 anatomical objects
21 appearance
22 applications
23 approach
24 auto
25 cardiac chambers
26 cardiac computed tomography
27 cardiology
28 catheter detection
29 challenges
30 chamber
31 changes
32 chapter
33 classifier
34 clinical knowledge
35 clinicians
36 computed tomography
37 conditions
38 consistent representation
39 crucial task
40 database
41 deformable targets
42 detection
43 device movement
44 diagnosis
45 domain knowledge
46 expert clinical knowledge
47 fast tracking
48 fluoroscopy
49 focus
50 framework
51 heart
52 image analysis
53 image analysis applications
54 image classifier
55 image processing tools
56 image-guided interventions
57 imaging
58 imaging database
59 important role
60 information
61 inherent changes
62 intervention
63 knowledge
64 magnetic resonance imaging
65 main challenges
66 matching
67 medical image analysis
68 medical image analysis applications
69 medical image processing tools
70 medical imaging
71 modalities
72 model
73 motion model
74 movement
75 multiple modalities
76 object model
77 objects
78 planning
79 prior information
80 probabilistic approach
81 probabilistic framework
82 processing tools
83 ray fluoroscopy
84 registration
85 representation
86 resonance imaging
87 role
88 shape model
89 source
90 sources of information
91 structure tracking
92 target
93 target appearance
94 target movement
95 task
96 template matching
97 temporal trajectories
98 therapy planning
99 tomography
100 tool
101 tracking
102 tracking approach
103 traditional tracking approaches
104 trajectories
105 ultrasound
106 schema:name Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach
107 schema:pagination 209-235
108 schema:productId N6357089fbc184dd8a4e0deb3e4c4de06
109 N8e314b07fc3f455a8d017fcf8836ad57
110 schema:publisher N6f591106c5a2441996e61398ca4fd4c7
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046552752
112 https://doi.org/10.1007/978-94-007-5446-1_9
113 schema:sdDatePublished 2022-05-20T07:48
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N615ee9459f8d46b1a16eaeff2b4869e5
116 schema:url https://doi.org/10.1007/978-94-007-5446-1_9
117 sgo:license sg:explorer/license/
118 sgo:sdDataset chapters
119 rdf:type schema:Chapter
120 N04a8f8c86cd2482c8d1fd3f50cee18d5 rdf:first sg:person.0703547214.37
121 rdf:rest N39dba5a166a049adaf697260f299c1d5
122 N0757852ed5de4d2a90e48f7ac0e01320 rdf:first sg:person.0656702353.18
123 rdf:rest N16a42d45ba094386afd405f850185bda
124 N16a42d45ba094386afd405f850185bda rdf:first sg:person.01010560470.38
125 rdf:rest N94b51a30c89d4423a3290f72167d8c33
126 N2c3282af8e02478fad6c2216106b4758 schema:isbn 978-94-007-5445-4
127 978-94-007-5446-1
128 schema:name Deformation Models
129 rdf:type schema:Book
130 N39dba5a166a049adaf697260f299c1d5 rdf:first sg:person.0753267612.06
131 rdf:rest Ndd20debe411047669f062a50337e7ea5
132 N4ac03a0c02c249c2816c8d5467593f97 schema:familyName Varona Gómez
133 schema:givenName Javier
134 rdf:type schema:Person
135 N4ccc2fa0f8fc43369f1ca32b43299903 rdf:first Nde13f620fc834f5c98d8ad742e3993f4
136 rdf:rest Na834c31669fd4002838b7008ef558f92
137 N4fea139cfd174e648c83c39cd95581d3 rdf:first sg:person.01066111014.77
138 rdf:rest rdf:nil
139 N615ee9459f8d46b1a16eaeff2b4869e5 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N61767d69844543d1bdd2aa1463aab906 schema:familyName González Hidalgo
142 schema:givenName Manuel
143 rdf:type schema:Person
144 N6357089fbc184dd8a4e0deb3e4c4de06 schema:name doi
145 schema:value 10.1007/978-94-007-5446-1_9
146 rdf:type schema:PropertyValue
147 N6f591106c5a2441996e61398ca4fd4c7 schema:name Springer Nature
148 rdf:type schema:Organisation
149 N88d2f1ceaa664df381add315993426a8 rdf:first sg:person.0705154412.76
150 rdf:rest N0757852ed5de4d2a90e48f7ac0e01320
151 N8d142bb2aa104103aefe30fcbcc7220c rdf:first sg:person.01356704511.13
152 rdf:rest N04a8f8c86cd2482c8d1fd3f50cee18d5
153 N8e314b07fc3f455a8d017fcf8836ad57 schema:name dimensions_id
154 schema:value pub.1046552752
155 rdf:type schema:PropertyValue
156 N94b51a30c89d4423a3290f72167d8c33 rdf:first sg:person.0767211426.21
157 rdf:rest N4fea139cfd174e648c83c39cd95581d3
158 Na834c31669fd4002838b7008ef558f92 rdf:first N4ac03a0c02c249c2816c8d5467593f97
159 rdf:rest rdf:nil
160 Ndd20debe411047669f062a50337e7ea5 rdf:first sg:person.012360474011.61
161 rdf:rest N88d2f1ceaa664df381add315993426a8
162 Nde13f620fc834f5c98d8ad742e3993f4 schema:familyName Mir Torres
163 schema:givenName Arnau
164 rdf:type schema:Person
165 Ne2ecafdf779a466caae0c9751e90f343 rdf:first N61767d69844543d1bdd2aa1463aab906
166 rdf:rest N4ccc2fa0f8fc43369f1ca32b43299903
167 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
168 schema:name Information and Computing Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
171 schema:name Artificial Intelligence and Image Processing
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
174 schema:name Information Systems
175 rdf:type schema:DefinedTerm
176 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
177 schema:name Engineering
178 rdf:type schema:DefinedTerm
179 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
180 schema:name Biomedical Engineering
181 rdf:type schema:DefinedTerm
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
186 schema:name Cardiorespiratory Medicine and Haematology
187 rdf:type schema:DefinedTerm
188 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
189 schema:familyName Ionasec
190 schema:givenName Razvan
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
192 rdf:type schema:Person
193 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
194 schema:familyName Comaniciu
195 schema:givenName Dorin
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
197 rdf:type schema:Person
198 sg:person.012360474011.61 schema:affiliation grid-institutes:grid.419233.e
199 schema:familyName Wu
200 schema:givenName Wen
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61
202 rdf:type schema:Person
203 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
204 schema:familyName Wang
205 schema:givenName Yang
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
207 rdf:type schema:Person
208 sg:person.0656702353.18 schema:affiliation grid-institutes:grid.419233.e
209 schema:familyName Lu
210 schema:givenName Xiaoguang
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656702353.18
212 rdf:type schema:Person
213 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
214 schema:familyName Georgescu
215 schema:givenName Bogdan
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
217 rdf:type schema:Person
218 sg:person.0705154412.76 schema:affiliation grid-institutes:grid.419233.e
219 schema:familyName Wang
220 schema:givenName Peng
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705154412.76
222 rdf:type schema:Person
223 sg:person.0753267612.06 schema:affiliation grid-institutes:grid.419233.e
224 schema:familyName Chen
225 schema:givenName Terrence
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06
227 rdf:type schema:Person
228 sg:person.0767211426.21 schema:affiliation grid-institutes:grid.419233.e
229 schema:familyName Zheng
230 schema:givenName Yefeng
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767211426.21
232 rdf:type schema:Person
233 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA
234 schema:name Imaging and Computer Vision, Siemens Corporate Research, 08540, Princeton, NJ, USA
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...