2012-09-21
AUTHORSNadezda Kuznetsova , E. Semenova , S. Kadkhodazadeh , K. Yvind
ABSTRACTWe are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 μm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and μPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). More... »
PAGES417-418
Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale
ISBN
978-94-007-5312-9
978-94-007-5313-6
http://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40
DOIhttp://dx.doi.org/10.1007/978-94-007-5313-6_40
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023824611
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Nanotechnology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Kuznetsova",
"givenName": "Nadezda",
"id": "sg:person.016571317557.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571317557.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Semenova",
"givenName": "E.",
"id": "sg:person.010767406335.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Kadkhodazadeh",
"givenName": "S.",
"id": "sg:person.010716423276.93",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716423276.93"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark",
"id": "http://www.grid.ac/institutes/grid.5170.3",
"name": [
"DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
],
"type": "Organization"
},
"familyName": "Yvind",
"givenName": "K.",
"id": "sg:person.01136544222.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92"
],
"type": "Person"
}
],
"datePublished": "2012-09-21",
"datePublishedReg": "2012-09-21",
"description": "We are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 \u03bcm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and \u03bcPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT).",
"editor": [
{
"familyName": "Di Bartolo",
"givenName": "Baldassare",
"type": "Person"
},
{
"familyName": "Collins",
"givenName": "John",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-007-5313-6_40",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-007-5312-9",
"978-94-007-5313-6"
],
"name": "Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale",
"type": "Book"
},
"keywords": [
"high-resolution transmission electron microscopy",
"quantum dots",
"atom probe tomography",
"optical properties",
"hydrogen silsesquioxane resist",
"semiconductor optical devices",
"precise wavelength control",
"photonic crystal devices",
"photonic crystal platform",
"metalorganic vapor phase epitaxial growth",
"interaction of photons",
"needle-shaped specimens",
"active material",
"identical quantum dots",
"transmission electron microscopy",
"low power consumption",
"vapor phase epitaxial growth",
"selective area growth",
"optical field",
"quantum wells",
"optical functionalities",
"wavelength control",
"beam lithography",
"optical devices",
"fabrication steps",
"wavelength region",
"wave functions",
"crystal devices",
"grown materials",
"InP substrates",
"beam resolution",
"crystalline quality",
"power consumption",
"epitaxial material",
"probe tomography",
"epitaxial growth",
"electron microscopy",
"efficient devices",
"dots",
"devices",
"photoluminescence",
"wafers",
"resist",
"area growth",
"independent control",
"crystalline properties",
"patterned dots",
"photons",
"nanoscale",
"growth parameters",
"lithography",
"pattern realization",
"routing",
"\u03bcPL",
"materials",
"wire",
"realization",
"properties",
"microscopy",
"communication",
"different structures",
"functionality",
"array",
"platform",
"substrate",
"identical properties",
"resolution",
"ultimate goal",
"field",
"shape",
"wells",
"parameters",
"applications",
"size",
"complete control",
"consumption",
"position",
"structure",
"matrix",
"growth",
"interaction",
"control",
"distribution",
"specimens",
"region",
"work",
"method",
"tomography",
"investigation",
"principles",
"step",
"amount",
"certain places",
"quality",
"function",
"research",
"goal",
"place"
],
"name": "Nanoscale Semiconductor Optical Devices",
"pagination": "417-418",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023824611"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-007-5313-6_40"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-007-5313-6_40",
"https://app.dimensions.ai/details/publication/pub.1023824611"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_405.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-007-5313-6_40"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'
This table displays all metadata directly associated to this object as RDF triples.
200 TRIPLES
23 PREDICATES
127 URIs
116 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-007-5313-6_40 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0205 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0912 |
5 | ″ | ″ | anzsrc-for:10 |
6 | ″ | ″ | anzsrc-for:1007 |
7 | ″ | schema:author | Ne46f886eee3b408c9a3ed16d3493a622 |
8 | ″ | schema:datePublished | 2012-09-21 |
9 | ″ | schema:datePublishedReg | 2012-09-21 |
10 | ″ | schema:description | We are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 μm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and μPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). |
11 | ″ | schema:editor | N66ef01d9565540d095e40a866a836cc6 |
12 | ″ | schema:genre | chapter |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N6fb9ba01192b43c0aad96268f0db1141 |
16 | ″ | schema:keywords | InP substrates |
17 | ″ | ″ | active material |
18 | ″ | ″ | amount |
19 | ″ | ″ | applications |
20 | ″ | ″ | area growth |
21 | ″ | ″ | array |
22 | ″ | ″ | atom probe tomography |
23 | ″ | ″ | beam lithography |
24 | ″ | ″ | beam resolution |
25 | ″ | ″ | certain places |
26 | ″ | ″ | communication |
27 | ″ | ″ | complete control |
28 | ″ | ″ | consumption |
29 | ″ | ″ | control |
30 | ″ | ″ | crystal devices |
31 | ″ | ″ | crystalline properties |
32 | ″ | ″ | crystalline quality |
33 | ″ | ″ | devices |
34 | ″ | ″ | different structures |
35 | ″ | ″ | distribution |
36 | ″ | ″ | dots |
37 | ″ | ″ | efficient devices |
38 | ″ | ″ | electron microscopy |
39 | ″ | ″ | epitaxial growth |
40 | ″ | ″ | epitaxial material |
41 | ″ | ″ | fabrication steps |
42 | ″ | ″ | field |
43 | ″ | ″ | function |
44 | ″ | ″ | functionality |
45 | ″ | ″ | goal |
46 | ″ | ″ | grown materials |
47 | ″ | ″ | growth |
48 | ″ | ″ | growth parameters |
49 | ″ | ″ | high-resolution transmission electron microscopy |
50 | ″ | ″ | hydrogen silsesquioxane resist |
51 | ″ | ″ | identical properties |
52 | ″ | ″ | identical quantum dots |
53 | ″ | ″ | independent control |
54 | ″ | ″ | interaction |
55 | ″ | ″ | interaction of photons |
56 | ″ | ″ | investigation |
57 | ″ | ″ | lithography |
58 | ″ | ″ | low power consumption |
59 | ″ | ″ | materials |
60 | ″ | ″ | matrix |
61 | ″ | ″ | metalorganic vapor phase epitaxial growth |
62 | ″ | ″ | method |
63 | ″ | ″ | microscopy |
64 | ″ | ″ | nanoscale |
65 | ″ | ″ | needle-shaped specimens |
66 | ″ | ″ | optical devices |
67 | ″ | ″ | optical field |
68 | ″ | ″ | optical functionalities |
69 | ″ | ″ | optical properties |
70 | ″ | ″ | parameters |
71 | ″ | ″ | pattern realization |
72 | ″ | ″ | patterned dots |
73 | ″ | ″ | photoluminescence |
74 | ″ | ″ | photonic crystal devices |
75 | ″ | ″ | photonic crystal platform |
76 | ″ | ″ | photons |
77 | ″ | ″ | place |
78 | ″ | ″ | platform |
79 | ″ | ″ | position |
80 | ″ | ″ | power consumption |
81 | ″ | ″ | precise wavelength control |
82 | ″ | ″ | principles |
83 | ″ | ″ | probe tomography |
84 | ″ | ″ | properties |
85 | ″ | ″ | quality |
86 | ″ | ″ | quantum dots |
87 | ″ | ″ | quantum wells |
88 | ″ | ″ | realization |
89 | ″ | ″ | region |
90 | ″ | ″ | research |
91 | ″ | ″ | resist |
92 | ″ | ″ | resolution |
93 | ″ | ″ | routing |
94 | ″ | ″ | selective area growth |
95 | ″ | ″ | semiconductor optical devices |
96 | ″ | ″ | shape |
97 | ″ | ″ | size |
98 | ″ | ″ | specimens |
99 | ″ | ″ | step |
100 | ″ | ″ | structure |
101 | ″ | ″ | substrate |
102 | ″ | ″ | tomography |
103 | ″ | ″ | transmission electron microscopy |
104 | ″ | ″ | ultimate goal |
105 | ″ | ″ | vapor phase epitaxial growth |
106 | ″ | ″ | wafers |
107 | ″ | ″ | wave functions |
108 | ″ | ″ | wavelength control |
109 | ″ | ″ | wavelength region |
110 | ″ | ″ | wells |
111 | ″ | ″ | wire |
112 | ″ | ″ | work |
113 | ″ | ″ | μPL |
114 | ″ | schema:name | Nanoscale Semiconductor Optical Devices |
115 | ″ | schema:pagination | 417-418 |
116 | ″ | schema:productId | N28fee8a11ccd40c786abd48dfe19aa9a |
117 | ″ | ″ | Na1885f618db64ed79ade96fa318cab96 |
118 | ″ | schema:publisher | N3d7b100ef59c46349ffad94b960de271 |
119 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023824611 |
120 | ″ | ″ | https://doi.org/10.1007/978-94-007-5313-6_40 |
121 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
122 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
123 | ″ | schema:sdPublisher | N9da19fcb7fd54cec8a232aeb04ee7028 |
124 | ″ | schema:url | https://doi.org/10.1007/978-94-007-5313-6_40 |
125 | ″ | sgo:license | sg:explorer/license/ |
126 | ″ | sgo:sdDataset | chapters |
127 | ″ | rdf:type | schema:Chapter |
128 | N28fee8a11ccd40c786abd48dfe19aa9a | schema:name | dimensions_id |
129 | ″ | schema:value | pub.1023824611 |
130 | ″ | rdf:type | schema:PropertyValue |
131 | N292f9ab754994727a65893abdbccca83 | schema:familyName | Di Bartolo |
132 | ″ | schema:givenName | Baldassare |
133 | ″ | rdf:type | schema:Person |
134 | N3a35ab33247e4d40a3db785f8e8c2128 | rdf:first | sg:person.010767406335.85 |
135 | ″ | rdf:rest | N5b519f8f46234c9b8008ae4ba1e857a7 |
136 | N3d7b100ef59c46349ffad94b960de271 | schema:name | Springer Nature |
137 | ″ | rdf:type | schema:Organisation |
138 | N5b519f8f46234c9b8008ae4ba1e857a7 | rdf:first | sg:person.010716423276.93 |
139 | ″ | rdf:rest | Na1adbcbdabf2422fb48f70738c4be85b |
140 | N66ef01d9565540d095e40a866a836cc6 | rdf:first | N292f9ab754994727a65893abdbccca83 |
141 | ″ | rdf:rest | N702fd7952bd14cecb1de57d340ad5bb4 |
142 | N6fb9ba01192b43c0aad96268f0db1141 | schema:isbn | 978-94-007-5312-9 |
143 | ″ | ″ | 978-94-007-5313-6 |
144 | ″ | schema:name | Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale |
145 | ″ | rdf:type | schema:Book |
146 | N702fd7952bd14cecb1de57d340ad5bb4 | rdf:first | Nc5a4cbc2397c49d1b7f021418d8cd20a |
147 | ″ | rdf:rest | rdf:nil |
148 | N9da19fcb7fd54cec8a232aeb04ee7028 | schema:name | Springer Nature - SN SciGraph project |
149 | ″ | rdf:type | schema:Organization |
150 | Na1885f618db64ed79ade96fa318cab96 | schema:name | doi |
151 | ″ | schema:value | 10.1007/978-94-007-5313-6_40 |
152 | ″ | rdf:type | schema:PropertyValue |
153 | Na1adbcbdabf2422fb48f70738c4be85b | rdf:first | sg:person.01136544222.92 |
154 | ″ | rdf:rest | rdf:nil |
155 | Nc5a4cbc2397c49d1b7f021418d8cd20a | schema:familyName | Collins |
156 | ″ | schema:givenName | John |
157 | ″ | rdf:type | schema:Person |
158 | Ne46f886eee3b408c9a3ed16d3493a622 | rdf:first | sg:person.016571317557.77 |
159 | ″ | rdf:rest | N3a35ab33247e4d40a3db785f8e8c2128 |
160 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
161 | ″ | schema:name | Physical Sciences |
162 | ″ | rdf:type | schema:DefinedTerm |
163 | anzsrc-for:0205 | schema:inDefinedTermSet | anzsrc-for: |
164 | ″ | schema:name | Optical Physics |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
167 | ″ | schema:name | Engineering |
168 | ″ | rdf:type | schema:DefinedTerm |
169 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
170 | ″ | schema:name | Materials Engineering |
171 | ″ | rdf:type | schema:DefinedTerm |
172 | anzsrc-for:10 | schema:inDefinedTermSet | anzsrc-for: |
173 | ″ | schema:name | Technology |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | anzsrc-for:1007 | schema:inDefinedTermSet | anzsrc-for: |
176 | ″ | schema:name | Nanotechnology |
177 | ″ | rdf:type | schema:DefinedTerm |
178 | sg:person.010716423276.93 | schema:affiliation | grid-institutes:grid.5170.3 |
179 | ″ | schema:familyName | Kadkhodazadeh |
180 | ″ | schema:givenName | S. |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716423276.93 |
182 | ″ | rdf:type | schema:Person |
183 | sg:person.010767406335.85 | schema:affiliation | grid-institutes:grid.5170.3 |
184 | ″ | schema:familyName | Semenova |
185 | ″ | schema:givenName | E. |
186 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85 |
187 | ″ | rdf:type | schema:Person |
188 | sg:person.01136544222.92 | schema:affiliation | grid-institutes:grid.5170.3 |
189 | ″ | schema:familyName | Yvind |
190 | ″ | schema:givenName | K. |
191 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92 |
192 | ″ | rdf:type | schema:Person |
193 | sg:person.016571317557.77 | schema:affiliation | grid-institutes:grid.5170.3 |
194 | ″ | schema:familyName | Kuznetsova |
195 | ″ | schema:givenName | Nadezda |
196 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571317557.77 |
197 | ″ | rdf:type | schema:Person |
198 | grid-institutes:grid.5170.3 | schema:alternateName | DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark |
199 | ″ | schema:name | DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark |
200 | ″ | rdf:type | schema:Organization |