Nanoscale Semiconductor Optical Devices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012-09-21

AUTHORS

Nadezda Kuznetsova , E. Semenova , S. Kadkhodazadeh , K. Yvind

ABSTRACT

We are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 μm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and μPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT). More... »

PAGES

417-418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40

DOI

http://dx.doi.org/10.1007/978-94-007-5313-6_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023824611


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "Nadezda", 
        "id": "sg:person.016571317557.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571317557.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenova", 
        "givenName": "E.", 
        "id": "sg:person.010767406335.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadkhodazadeh", 
        "givenName": "S.", 
        "id": "sg:person.010716423276.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716423276.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, \u00d8rsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yvind", 
        "givenName": "K.", 
        "id": "sg:person.01136544222.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-09-21", 
    "datePublishedReg": "2012-09-21", 
    "description": "We are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 \u03bcm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and \u03bcPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT).", 
    "editor": [
      {
        "familyName": "Di Bartolo", 
        "givenName": "Baldassare", 
        "type": "Person"
      }, 
      {
        "familyName": "Collins", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-5313-6_40", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-5312-9", 
        "978-94-007-5313-6"
      ], 
      "name": "Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale", 
      "type": "Book"
    }, 
    "keywords": [
      "high-resolution transmission electron microscopy", 
      "quantum dots", 
      "atom probe tomography", 
      "optical properties", 
      "hydrogen silsesquioxane resist", 
      "semiconductor optical devices", 
      "precise wavelength control", 
      "photonic crystal devices", 
      "photonic crystal platform", 
      "metalorganic vapor phase epitaxial growth", 
      "interaction of photons", 
      "needle-shaped specimens", 
      "active material", 
      "identical quantum dots", 
      "transmission electron microscopy", 
      "low power consumption", 
      "vapor phase epitaxial growth", 
      "selective area growth", 
      "optical field", 
      "quantum wells", 
      "optical functionalities", 
      "wavelength control", 
      "beam lithography", 
      "optical devices", 
      "fabrication steps", 
      "wavelength region", 
      "wave functions", 
      "crystal devices", 
      "grown materials", 
      "InP substrates", 
      "beam resolution", 
      "crystalline quality", 
      "power consumption", 
      "epitaxial material", 
      "probe tomography", 
      "epitaxial growth", 
      "electron microscopy", 
      "efficient devices", 
      "dots", 
      "devices", 
      "photoluminescence", 
      "wafers", 
      "resist", 
      "area growth", 
      "independent control", 
      "crystalline properties", 
      "patterned dots", 
      "photons", 
      "nanoscale", 
      "growth parameters", 
      "lithography", 
      "pattern realization", 
      "routing", 
      "\u03bcPL", 
      "materials", 
      "wire", 
      "realization", 
      "properties", 
      "microscopy", 
      "communication", 
      "different structures", 
      "functionality", 
      "array", 
      "platform", 
      "substrate", 
      "identical properties", 
      "resolution", 
      "ultimate goal", 
      "field", 
      "shape", 
      "wells", 
      "parameters", 
      "applications", 
      "size", 
      "complete control", 
      "consumption", 
      "position", 
      "structure", 
      "matrix", 
      "growth", 
      "interaction", 
      "control", 
      "distribution", 
      "specimens", 
      "region", 
      "work", 
      "method", 
      "tomography", 
      "investigation", 
      "principles", 
      "step", 
      "amount", 
      "certain places", 
      "quality", 
      "function", 
      "research", 
      "goal", 
      "place"
    ], 
    "name": "Nanoscale Semiconductor Optical Devices", 
    "pagination": "417-418", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023824611"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-5313-6_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-5313-6_40", 
      "https://app.dimensions.ai/details/publication/pub.1023824611"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_405.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-5313-6_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5313-6_40'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      23 PREDICATES      127 URIs      116 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-5313-6_40 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:10
6 anzsrc-for:1007
7 schema:author Ne46f886eee3b408c9a3ed16d3493a622
8 schema:datePublished 2012-09-21
9 schema:datePublishedReg 2012-09-21
10 schema:description We are doing research on nanoscale patterned growth of quantum wells, wires and dots for application in photonics crystal devices for terabit communication operating in the 1.55 μm wavelength region. Fabricating devices that allow complete control of the optical fields and electrical wave functions are the ultimate goals of this work which will allow fully tailored interaction of photons and materials. This will enable very efficient devices with low power consumption and precise wavelength control. Also, all-optical functionality like switching and routing can possibly be done economically.Selective area growth is necessary for realization of independent control of the position and amount of active material. This method gives us quantum dots (QD) and wires in certain places with identical properties. Arrays of identical QDs with desired size, shape and position on the wafer can in principle be fabricated. This allows integrating the active material with the photonic crystal platform with the very precise e-beam resolution. We are looking for growth parameters to obtain QDs with high optical and crystalline quality and with desired properties.This is performed using metalorganic vapour phase epitaxial (MOVPE) growth of quantum dots on InP substrates. E-beam lithography and high resolution hydrogen silsesquioxane (HSQ) resist are used for pattern realization. Active epitaxial material is deposited in the nano-openings in the resist. After the fabrication steps we carry out investigations of the optical and crystalline properties of the grown materials. The optical properties are characterized using photoluminescence (PL) and μPL and compared for the different structures and growth parameters.The optical properties are dependent on the shape of the QDs and surrounding matrix. Since the patterned dots are sparsely distribution across the wafer we are currently preparing special needle-shaped specimens that contain several QDs and can be used for high-resolution transmission electron microscopy (HRTEM) and atom probe tomography (APT).
11 schema:editor N66ef01d9565540d095e40a866a836cc6
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N6fb9ba01192b43c0aad96268f0db1141
16 schema:keywords InP substrates
17 active material
18 amount
19 applications
20 area growth
21 array
22 atom probe tomography
23 beam lithography
24 beam resolution
25 certain places
26 communication
27 complete control
28 consumption
29 control
30 crystal devices
31 crystalline properties
32 crystalline quality
33 devices
34 different structures
35 distribution
36 dots
37 efficient devices
38 electron microscopy
39 epitaxial growth
40 epitaxial material
41 fabrication steps
42 field
43 function
44 functionality
45 goal
46 grown materials
47 growth
48 growth parameters
49 high-resolution transmission electron microscopy
50 hydrogen silsesquioxane resist
51 identical properties
52 identical quantum dots
53 independent control
54 interaction
55 interaction of photons
56 investigation
57 lithography
58 low power consumption
59 materials
60 matrix
61 metalorganic vapor phase epitaxial growth
62 method
63 microscopy
64 nanoscale
65 needle-shaped specimens
66 optical devices
67 optical field
68 optical functionalities
69 optical properties
70 parameters
71 pattern realization
72 patterned dots
73 photoluminescence
74 photonic crystal devices
75 photonic crystal platform
76 photons
77 place
78 platform
79 position
80 power consumption
81 precise wavelength control
82 principles
83 probe tomography
84 properties
85 quality
86 quantum dots
87 quantum wells
88 realization
89 region
90 research
91 resist
92 resolution
93 routing
94 selective area growth
95 semiconductor optical devices
96 shape
97 size
98 specimens
99 step
100 structure
101 substrate
102 tomography
103 transmission electron microscopy
104 ultimate goal
105 vapor phase epitaxial growth
106 wafers
107 wave functions
108 wavelength control
109 wavelength region
110 wells
111 wire
112 work
113 μPL
114 schema:name Nanoscale Semiconductor Optical Devices
115 schema:pagination 417-418
116 schema:productId N28fee8a11ccd40c786abd48dfe19aa9a
117 Na1885f618db64ed79ade96fa318cab96
118 schema:publisher N3d7b100ef59c46349ffad94b960de271
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023824611
120 https://doi.org/10.1007/978-94-007-5313-6_40
121 schema:sdDatePublished 2022-05-20T07:47
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N9da19fcb7fd54cec8a232aeb04ee7028
124 schema:url https://doi.org/10.1007/978-94-007-5313-6_40
125 sgo:license sg:explorer/license/
126 sgo:sdDataset chapters
127 rdf:type schema:Chapter
128 N28fee8a11ccd40c786abd48dfe19aa9a schema:name dimensions_id
129 schema:value pub.1023824611
130 rdf:type schema:PropertyValue
131 N292f9ab754994727a65893abdbccca83 schema:familyName Di Bartolo
132 schema:givenName Baldassare
133 rdf:type schema:Person
134 N3a35ab33247e4d40a3db785f8e8c2128 rdf:first sg:person.010767406335.85
135 rdf:rest N5b519f8f46234c9b8008ae4ba1e857a7
136 N3d7b100ef59c46349ffad94b960de271 schema:name Springer Nature
137 rdf:type schema:Organisation
138 N5b519f8f46234c9b8008ae4ba1e857a7 rdf:first sg:person.010716423276.93
139 rdf:rest Na1adbcbdabf2422fb48f70738c4be85b
140 N66ef01d9565540d095e40a866a836cc6 rdf:first N292f9ab754994727a65893abdbccca83
141 rdf:rest N702fd7952bd14cecb1de57d340ad5bb4
142 N6fb9ba01192b43c0aad96268f0db1141 schema:isbn 978-94-007-5312-9
143 978-94-007-5313-6
144 schema:name Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale
145 rdf:type schema:Book
146 N702fd7952bd14cecb1de57d340ad5bb4 rdf:first Nc5a4cbc2397c49d1b7f021418d8cd20a
147 rdf:rest rdf:nil
148 N9da19fcb7fd54cec8a232aeb04ee7028 schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Na1885f618db64ed79ade96fa318cab96 schema:name doi
151 schema:value 10.1007/978-94-007-5313-6_40
152 rdf:type schema:PropertyValue
153 Na1adbcbdabf2422fb48f70738c4be85b rdf:first sg:person.01136544222.92
154 rdf:rest rdf:nil
155 Nc5a4cbc2397c49d1b7f021418d8cd20a schema:familyName Collins
156 schema:givenName John
157 rdf:type schema:Person
158 Ne46f886eee3b408c9a3ed16d3493a622 rdf:first sg:person.016571317557.77
159 rdf:rest N3a35ab33247e4d40a3db785f8e8c2128
160 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
161 schema:name Physical Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
164 schema:name Optical Physics
165 rdf:type schema:DefinedTerm
166 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
167 schema:name Engineering
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
170 schema:name Materials Engineering
171 rdf:type schema:DefinedTerm
172 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
173 schema:name Technology
174 rdf:type schema:DefinedTerm
175 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
176 schema:name Nanotechnology
177 rdf:type schema:DefinedTerm
178 sg:person.010716423276.93 schema:affiliation grid-institutes:grid.5170.3
179 schema:familyName Kadkhodazadeh
180 schema:givenName S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716423276.93
182 rdf:type schema:Person
183 sg:person.010767406335.85 schema:affiliation grid-institutes:grid.5170.3
184 schema:familyName Semenova
185 schema:givenName E.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010767406335.85
187 rdf:type schema:Person
188 sg:person.01136544222.92 schema:affiliation grid-institutes:grid.5170.3
189 schema:familyName Yvind
190 schema:givenName K.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136544222.92
192 rdf:type schema:Person
193 sg:person.016571317557.77 schema:affiliation grid-institutes:grid.5170.3
194 schema:familyName Kuznetsova
195 schema:givenName Nadezda
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571317557.77
197 rdf:type schema:Person
198 grid-institutes:grid.5170.3 schema:alternateName DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark
199 schema:name DTU Fotonik, Nanophotonic Devices, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, Kgs., DK-2800, Lyngby, Denmark
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...