Ontology type: schema:Chapter
2012-10-29
AUTHORS ABSTRACTA consistent relativistic energy approach to the calculation of probabilities of cooperative electron-gamma-nuclear processes is developed. The nuclear excitation by electron transition (NEET) effect is studied. The NEET process probability and cross section are determined within the S-matrix Gell-Mann and Low formalism (energy approach) combined with the relativistic many-body perturbation theory (PT). Summary of the experimental and theoretical works on the NEET effect is presented. The calculation results of the NEET probabilities for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{76}}^{{189}}{\text{Os}} $$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{77}}^{{193}}{\text{Ir}} $$ \end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{79}}^{{197}}{\text{Au}} $$ \end{document} atoms are presented and compared with available experimental and alternative theoretical data. The theoretical and experimental study of the cooperative electron-gamma-nuclear process such as the NEET effect is expected to allow the determination of nuclear transition energies and the study of atomic vacancy effects on nuclear lifetime and population mechanisms of excited nuclear levels. More... »
PAGES217-229
Quantum Systems in Chemistry and Physics
ISBN
978-94-007-5296-2
978-94-007-5297-9
http://scigraph.springernature.com/pub.10.1007/978-94-007-5297-9_11
DOIhttp://dx.doi.org/10.1007/978-94-007-5297-9_11
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1031230494
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Odessa OSENU University, 24a, 65009, Odessa-9, Ukraine",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Odessa OSENU University, 24a, 65009, Odessa-9, Ukraine"
],
"type": "Organization"
},
"familyName": "Khetselius",
"givenName": "Olga Yu.",
"id": "sg:person.014624751311.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
],
"type": "Person"
}
],
"datePublished": "2012-10-29",
"datePublishedReg": "2012-10-29",
"description": "A consistent relativistic energy approach to the calculation of probabilities of cooperative electron-gamma-nuclear processes is developed. The nuclear excitation by electron transition (NEET) effect is studied. The NEET process probability and cross section are determined within the S-matrix Gell-Mann and Low formalism (energy approach) combined with the relativistic many-body perturbation theory (PT). Summary of the experimental and theoretical works on the NEET effect is presented. The calculation results of the NEET probabilities for the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$ {}_{{76}}^{{189}}{\\text{Os}} $$\n\\end{document}, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$ {}_{{77}}^{{193}}{\\text{Ir}} $$\n\\end{document}, and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$ {}_{{79}}^{{197}}{\\text{Au}} $$\n\\end{document} atoms are presented and compared with available experimental and alternative theoretical data. The theoretical and experimental study of the cooperative electron-gamma-nuclear process such as the NEET effect is expected to allow the determination of nuclear transition energies and the study of atomic vacancy effects on nuclear lifetime and population mechanisms of excited nuclear levels.",
"editor": [
{
"familyName": "Nishikawa",
"givenName": "Kiyoshi",
"type": "Person"
},
{
"familyName": "Maruani",
"givenName": "Jean",
"type": "Person"
},
{
"familyName": "Br\u00e4ndas",
"givenName": "Erkki J.",
"type": "Person"
},
{
"familyName": "Delgado-Barrio",
"givenName": "Gerardo",
"type": "Person"
},
{
"familyName": "Piecuch",
"givenName": "Piotr",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-007-5297-9_11",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-94-007-5296-2",
"978-94-007-5297-9"
],
"name": "Quantum Systems in Chemistry and Physics",
"type": "Book"
},
"keywords": [
"relativistic energy approach",
"perturbation theory",
"calculation of probabilities",
"body perturbation theory",
"energy approach",
"Gell-Mann",
"process probability",
"theoretical data",
"theoretical work",
"nuclear lifetimes",
"excited nuclear levels",
"calculation results",
"nuclear excitation",
"population mechanism",
"probability",
"vacancy effects",
"nuclear processes",
"cross sections",
"transition effects",
"transition energies",
"formalism",
"theory",
"electrons",
"calculations",
"approach",
"excitation",
"atoms",
"experimental study",
"energy",
"process",
"work",
"lifetime",
"results",
"effect",
"nuclear transition energy",
"data",
"sections",
"determination",
"nuclear levels",
"study",
"summary",
"mechanism",
"NEET",
"levels"
],
"name": "Relativistic Energy Approach to Cooperative Electron-\u03b3-Nuclear Processes: NEET Effect",
"pagination": "217-229",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1031230494"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-007-5297-9_11"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-007-5297-9_11",
"https://app.dimensions.ai/details/publication/pub.1031230494"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_105.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-007-5297-9_11"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5297-9_11'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5297-9_11'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5297-9_11'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5297-9_11'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
23 PREDICATES
69 URIs
62 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-94-007-5297-9_11 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Nbf01f24e56b3494e8fbf2e046db92389 |
4 | ″ | schema:datePublished | 2012-10-29 |
5 | ″ | schema:datePublishedReg | 2012-10-29 |
6 | ″ | schema:description | A consistent relativistic energy approach to the calculation of probabilities of cooperative electron-gamma-nuclear processes is developed. The nuclear excitation by electron transition (NEET) effect is studied. The NEET process probability and cross section are determined within the S-matrix Gell-Mann and Low formalism (energy approach) combined with the relativistic many-body perturbation theory (PT). Summary of the experimental and theoretical works on the NEET effect is presented. The calculation results of the NEET probabilities for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{76}}^{{189}}{\text{Os}} $$ \end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{77}}^{{193}}{\text{Ir}} $$ \end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {}_{{79}}^{{197}}{\text{Au}} $$ \end{document} atoms are presented and compared with available experimental and alternative theoretical data. The theoretical and experimental study of the cooperative electron-gamma-nuclear process such as the NEET effect is expected to allow the determination of nuclear transition energies and the study of atomic vacancy effects on nuclear lifetime and population mechanisms of excited nuclear levels. |
7 | ″ | schema:editor | N7d764f05e95b4946801358f22fba84e5 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N6ed81d5a40d64484bc1f231ed17284d8 |
12 | ″ | schema:keywords | Gell-Mann |
13 | ″ | ″ | NEET |
14 | ″ | ″ | approach |
15 | ″ | ″ | atoms |
16 | ″ | ″ | body perturbation theory |
17 | ″ | ″ | calculation of probabilities |
18 | ″ | ″ | calculation results |
19 | ″ | ″ | calculations |
20 | ″ | ″ | cross sections |
21 | ″ | ″ | data |
22 | ″ | ″ | determination |
23 | ″ | ″ | effect |
24 | ″ | ″ | electrons |
25 | ″ | ″ | energy |
26 | ″ | ″ | energy approach |
27 | ″ | ″ | excitation |
28 | ″ | ″ | excited nuclear levels |
29 | ″ | ″ | experimental study |
30 | ″ | ″ | formalism |
31 | ″ | ″ | levels |
32 | ″ | ″ | lifetime |
33 | ″ | ″ | mechanism |
34 | ″ | ″ | nuclear excitation |
35 | ″ | ″ | nuclear levels |
36 | ″ | ″ | nuclear lifetimes |
37 | ″ | ″ | nuclear processes |
38 | ″ | ″ | nuclear transition energy |
39 | ″ | ″ | perturbation theory |
40 | ″ | ″ | population mechanism |
41 | ″ | ″ | probability |
42 | ″ | ″ | process |
43 | ″ | ″ | process probability |
44 | ″ | ″ | relativistic energy approach |
45 | ″ | ″ | results |
46 | ″ | ″ | sections |
47 | ″ | ″ | study |
48 | ″ | ″ | summary |
49 | ″ | ″ | theoretical data |
50 | ″ | ″ | theoretical work |
51 | ″ | ″ | theory |
52 | ″ | ″ | transition effects |
53 | ″ | ″ | transition energies |
54 | ″ | ″ | vacancy effects |
55 | ″ | ″ | work |
56 | ″ | schema:name | Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect |
57 | ″ | schema:pagination | 217-229 |
58 | ″ | schema:productId | N2af0b330b6a94ae3ab35e93a178c56b6 |
59 | ″ | ″ | N52f227f8ca2247889b1ba18a49fdb7a4 |
60 | ″ | schema:publisher | Nd9aa578c823f41cb8d61478594f4faa6 |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031230494 |
62 | ″ | ″ | https://doi.org/10.1007/978-94-007-5297-9_11 |
63 | ″ | schema:sdDatePublished | 2022-05-20T07:41 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N7d3a73bbe9f943dbab694a5e72b3d2ac |
66 | ″ | schema:url | https://doi.org/10.1007/978-94-007-5297-9_11 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | chapters |
69 | ″ | rdf:type | schema:Chapter |
70 | N109993aa725145edb8d5f0d3c9ccd834 | schema:familyName | Nishikawa |
71 | ″ | schema:givenName | Kiyoshi |
72 | ″ | rdf:type | schema:Person |
73 | N15c8628806f84741aafd485746ae225a | schema:familyName | Maruani |
74 | ″ | schema:givenName | Jean |
75 | ″ | rdf:type | schema:Person |
76 | N2af0b330b6a94ae3ab35e93a178c56b6 | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1031230494 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N366122779aad4cf4ba0fc9c3c9262a45 | rdf:first | N4407ac95c35d45fab5b2a1618f311e13 |
80 | ″ | rdf:rest | N601d2afb338d44b1b074622d9d8dca8b |
81 | N4407ac95c35d45fab5b2a1618f311e13 | schema:familyName | Brändas |
82 | ″ | schema:givenName | Erkki J. |
83 | ″ | rdf:type | schema:Person |
84 | N52f227f8ca2247889b1ba18a49fdb7a4 | schema:name | doi |
85 | ″ | schema:value | 10.1007/978-94-007-5297-9_11 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N601d2afb338d44b1b074622d9d8dca8b | rdf:first | Nb882a5d4361f4e1ebf2ee80c71a43fc5 |
88 | ″ | rdf:rest | Nf4ca326300d04e1d899db8092284ef65 |
89 | N6ed81d5a40d64484bc1f231ed17284d8 | schema:isbn | 978-94-007-5296-2 |
90 | ″ | ″ | 978-94-007-5297-9 |
91 | ″ | schema:name | Quantum Systems in Chemistry and Physics |
92 | ″ | rdf:type | schema:Book |
93 | N7d3a73bbe9f943dbab694a5e72b3d2ac | schema:name | Springer Nature - SN SciGraph project |
94 | ″ | rdf:type | schema:Organization |
95 | N7d764f05e95b4946801358f22fba84e5 | rdf:first | N109993aa725145edb8d5f0d3c9ccd834 |
96 | ″ | rdf:rest | Ned32a9b0a12d4cec9847f06022ebb62f |
97 | Nb882a5d4361f4e1ebf2ee80c71a43fc5 | schema:familyName | Delgado-Barrio |
98 | ″ | schema:givenName | Gerardo |
99 | ″ | rdf:type | schema:Person |
100 | Nbf01f24e56b3494e8fbf2e046db92389 | rdf:first | sg:person.014624751311.43 |
101 | ″ | rdf:rest | rdf:nil |
102 | Nd41f664078d843b4bbc1cf5273db7970 | schema:familyName | Piecuch |
103 | ″ | schema:givenName | Piotr |
104 | ″ | rdf:type | schema:Person |
105 | Nd9aa578c823f41cb8d61478594f4faa6 | schema:name | Springer Nature |
106 | ″ | rdf:type | schema:Organisation |
107 | Ned32a9b0a12d4cec9847f06022ebb62f | rdf:first | N15c8628806f84741aafd485746ae225a |
108 | ″ | rdf:rest | N366122779aad4cf4ba0fc9c3c9262a45 |
109 | Nf4ca326300d04e1d899db8092284ef65 | rdf:first | Nd41f664078d843b4bbc1cf5273db7970 |
110 | ″ | rdf:rest | rdf:nil |
111 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Physical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | sg:person.014624751311.43 | schema:affiliation | grid-institutes:None |
118 | ″ | schema:familyName | Khetselius |
119 | ″ | schema:givenName | Olga Yu. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43 |
121 | ″ | rdf:type | schema:Person |
122 | grid-institutes:None | schema:alternateName | Odessa OSENU University, 24a, 65009, Odessa-9, Ukraine |
123 | ″ | schema:name | Odessa OSENU University, 24a, 65009, Odessa-9, Ukraine |
124 | ″ | rdf:type | schema:Organization |