Roadmap for Privacy Protection in Mobile Sensing Applications View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012-10-12

AUTHORS

Delphine Christin , Matthias Hollick

ABSTRACT

Current mobile phones feature a continuously increasing number of embedded sensors. This opens the doors to a wide range of novel mobile sensing applications, which can potentially benefit from sensor readings collected by billions of mobile phone subscribers. The collection of fine-grained sensor readings can however endanger multiple aspects of the privacy of the users contributing to these applications by, e.g., revealing their whereabouts or the social relationships. In this manuscript, we identify potential threats to privacy by considering each collected sensor modality individually. We then present selected privacy-preserving mechanisms specially tailored for mobile sensing applications and identify future research directions to further enhance the privacy protection of users contributing to such applications. More... »

PAGES

203-222

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-5170-5_9

DOI

http://dx.doi.org/10.1007/978-94-007-5170-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035222508


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universit\u00e4t Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universit\u00e4t Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christin", 
        "givenName": "Delphine", 
        "id": "sg:person.016422332615.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422332615.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universit\u00e4t Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universit\u00e4t Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hollick", 
        "givenName": "Matthias", 
        "id": "sg:person.010143067443.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143067443.79"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-10-12", 
    "datePublishedReg": "2012-10-12", 
    "description": "Current mobile phones feature a continuously increasing number of embedded sensors. This opens the doors to a wide range of novel mobile sensing applications, which can potentially benefit from sensor readings collected by billions of mobile phone subscribers. The collection of fine-grained sensor readings can however endanger multiple aspects of the privacy of the users contributing to these applications by, e.g., revealing their whereabouts or the social relationships. In this manuscript, we identify potential threats to privacy by considering each collected sensor modality individually. We then present selected privacy-preserving mechanisms specially tailored for mobile sensing applications and identify future research directions to further enhance the privacy protection of users contributing to such applications.", 
    "editor": [
      {
        "familyName": "Gutwirth", 
        "givenName": "Serge", 
        "type": "Person"
      }, 
      {
        "familyName": "Leenes", 
        "givenName": "Ronald", 
        "type": "Person"
      }, 
      {
        "familyName": "de Hert", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "familyName": "Poullet", 
        "givenName": "Yves", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-5170-5_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-5184-2", 
        "978-94-007-5170-5"
      ], 
      "name": "European Data Protection: Coming of Age", 
      "type": "Book"
    }, 
    "keywords": [
      "mobile sensing applications", 
      "privacy protection", 
      "sensor readings", 
      "privacy-preserving mechanisms", 
      "current mobile phones", 
      "sensing applications", 
      "sensor modalities", 
      "such applications", 
      "mobile phone subscribers", 
      "mobile phones", 
      "privacy", 
      "users", 
      "future research directions", 
      "research directions", 
      "applications", 
      "subscribers", 
      "phones", 
      "potential threat", 
      "billions", 
      "whereabouts", 
      "roadmap", 
      "sensors", 
      "social relationships", 
      "multiple aspects", 
      "collection", 
      "wide range", 
      "threat", 
      "door", 
      "protection", 
      "aspects", 
      "number", 
      "reading", 
      "direction", 
      "modalities", 
      "manuscript", 
      "mechanism", 
      "range", 
      "relationship", 
      "novel mobile sensing applications", 
      "phone subscribers"
    ], 
    "name": "Roadmap for Privacy Protection in Mobile Sensing Applications", 
    "pagination": "203-222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035222508"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-5170-5_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-5170-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1035222508"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_27.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-5170-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5170-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5170-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5170-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-5170-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-5170-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N43a36162fbaf43cd99a226af5219d060
4 schema:datePublished 2012-10-12
5 schema:datePublishedReg 2012-10-12
6 schema:description Current mobile phones feature a continuously increasing number of embedded sensors. This opens the doors to a wide range of novel mobile sensing applications, which can potentially benefit from sensor readings collected by billions of mobile phone subscribers. The collection of fine-grained sensor readings can however endanger multiple aspects of the privacy of the users contributing to these applications by, e.g., revealing their whereabouts or the social relationships. In this manuscript, we identify potential threats to privacy by considering each collected sensor modality individually. We then present selected privacy-preserving mechanisms specially tailored for mobile sensing applications and identify future research directions to further enhance the privacy protection of users contributing to such applications.
7 schema:editor Nce849868433049d1a0a6606bbaf844eb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N708d7adb458b460394a506932cf0758c
12 schema:keywords applications
13 aspects
14 billions
15 collection
16 current mobile phones
17 direction
18 door
19 future research directions
20 manuscript
21 mechanism
22 mobile phone subscribers
23 mobile phones
24 mobile sensing applications
25 modalities
26 multiple aspects
27 novel mobile sensing applications
28 number
29 phone subscribers
30 phones
31 potential threat
32 privacy
33 privacy protection
34 privacy-preserving mechanisms
35 protection
36 range
37 reading
38 relationship
39 research directions
40 roadmap
41 sensing applications
42 sensor modalities
43 sensor readings
44 sensors
45 social relationships
46 subscribers
47 such applications
48 threat
49 users
50 whereabouts
51 wide range
52 schema:name Roadmap for Privacy Protection in Mobile Sensing Applications
53 schema:pagination 203-222
54 schema:productId N6ed7db55c2cf446cace285654256bcc5
55 N8e341112328f4119bfa6957d50e931df
56 schema:publisher Ndefa8b00c5a44ab5879510c83e3e0937
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035222508
58 https://doi.org/10.1007/978-94-007-5170-5_9
59 schema:sdDatePublished 2021-12-01T20:02
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N7a51195d3c704358bd7b8de841d412b8
62 schema:url https://doi.org/10.1007/978-94-007-5170-5_9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N0150d20be8474891851c9a35140e7f1b schema:familyName Gutwirth
67 schema:givenName Serge
68 rdf:type schema:Person
69 N37105703bd2842cd9cd3a60d40ba578c schema:familyName Poullet
70 schema:givenName Yves
71 rdf:type schema:Person
72 N43a36162fbaf43cd99a226af5219d060 rdf:first sg:person.016422332615.77
73 rdf:rest Nb55730625a264686b43dffa4662ab415
74 N5407735383654e28aa03d402e692fb8c rdf:first Nceb87d9bc3d341719537782dd5972f6c
75 rdf:rest N5bcab57c06b54752925134fc1247517a
76 N5bcab57c06b54752925134fc1247517a rdf:first N5ebb06deca8445ee81a5adde52befb65
77 rdf:rest N75575992778a4b07b0b1cd4a9820719a
78 N5ebb06deca8445ee81a5adde52befb65 schema:familyName de Hert
79 schema:givenName Paul
80 rdf:type schema:Person
81 N6ed7db55c2cf446cace285654256bcc5 schema:name dimensions_id
82 schema:value pub.1035222508
83 rdf:type schema:PropertyValue
84 N708d7adb458b460394a506932cf0758c schema:isbn 978-94-007-5170-5
85 978-94-007-5184-2
86 schema:name European Data Protection: Coming of Age
87 rdf:type schema:Book
88 N75575992778a4b07b0b1cd4a9820719a rdf:first N37105703bd2842cd9cd3a60d40ba578c
89 rdf:rest rdf:nil
90 N7a51195d3c704358bd7b8de841d412b8 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N8e341112328f4119bfa6957d50e931df schema:name doi
93 schema:value 10.1007/978-94-007-5170-5_9
94 rdf:type schema:PropertyValue
95 Nb55730625a264686b43dffa4662ab415 rdf:first sg:person.010143067443.79
96 rdf:rest rdf:nil
97 Nce849868433049d1a0a6606bbaf844eb rdf:first N0150d20be8474891851c9a35140e7f1b
98 rdf:rest N5407735383654e28aa03d402e692fb8c
99 Nceb87d9bc3d341719537782dd5972f6c schema:familyName Leenes
100 schema:givenName Ronald
101 rdf:type schema:Person
102 Ndefa8b00c5a44ab5879510c83e3e0937 schema:name Springer Nature
103 rdf:type schema:Organisation
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
108 schema:name Data Format
109 rdf:type schema:DefinedTerm
110 sg:person.010143067443.79 schema:affiliation grid-institutes:grid.6546.1
111 schema:familyName Hollick
112 schema:givenName Matthias
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143067443.79
114 rdf:type schema:Person
115 sg:person.016422332615.77 schema:affiliation grid-institutes:grid.6546.1
116 schema:familyName Christin
117 schema:givenName Delphine
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016422332615.77
119 rdf:type schema:Person
120 grid-institutes:grid.6546.1 schema:alternateName Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universität Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany
121 schema:name Secure Mobile Networking Lab, Center for Advanced Security Research Darmstadt (CASED), Technische Universität Darmstadt, Mornewegstr. 32, Darmstadt, 64293, Germany
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...