Ontology type: schema:Chapter Open Access: True
2012-06-05
AUTHORSRalf Biedert , Mario Frank , Ivan Martinovic , Dawn Song
ABSTRACTUser authentication is an important and usually final barrier to detect and prevent illicit access. Nonetheless it can be broken or tricked, leaving the system and its data vulnerable to abuse. In this paper we consider how eye tracking can enable the system to hypothesize if the user is familiar with the system he operates, or if he is an unfamiliar intruder. Based on an eye tracking experiment conducted with 12 users and various stimuli, we investigate which conditions and measures are most suited for such an intrusion detection. We model the user’s gaze behavior as a selector for information flow via the relative conditional gaze entropy. We conclude that this feature provides the most discriminative results with static and repetitive stimuli. More... »
PAGES757-763
Future Information Technology, Application, and Service
ISBN
978-94-007-4515-5
978-94-007-4516-2
http://scigraph.springernature.com/pub.10.1007/978-94-007-4516-2_80
DOIhttp://dx.doi.org/10.1007/978-94-007-4516-2_80
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013484116
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Biedert",
"givenName": "Ralf",
"id": "sg:person.014750346647.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750346647.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Frank",
"givenName": "Mario",
"id": "sg:person.012211067635.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211067635.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oxford, Oxford, UK",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"University of Oxford, Oxford, UK"
],
"type": "Organization"
},
"familyName": "Martinovic",
"givenName": "Ivan",
"id": "sg:person.015515650557.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015515650557.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Dawn",
"id": "sg:person.01143152610.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86"
],
"type": "Person"
}
],
"datePublished": "2012-06-05",
"datePublishedReg": "2012-06-05",
"description": "User authentication is an important and usually final barrier to detect and prevent illicit access. Nonetheless it can be broken or tricked, leaving the system and its data vulnerable to abuse. In this paper we consider how eye tracking can enable the system to hypothesize if the user is familiar with the system he operates, or if he is an unfamiliar intruder. Based on an eye tracking experiment conducted with 12 users and various stimuli, we investigate which conditions and measures are most suited for such an intrusion detection. We model the user\u2019s gaze behavior as a selector for information flow via the relative conditional gaze entropy. We conclude that this feature provides the most discriminative results with static and repetitive stimuli.",
"editor": [
{
"familyName": "J. Park",
"givenName": "James",
"type": "Person"
},
{
"familyName": "Leung",
"givenName": "Victor C.M.",
"type": "Person"
},
{
"familyName": "Wang",
"givenName": "Cho-Li",
"type": "Person"
},
{
"familyName": "Shon",
"givenName": "Taeshik",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-94-007-4516-2_80",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-94-007-4515-5",
"978-94-007-4516-2"
],
"name": "Future Information Technology, Application, and Service",
"type": "Book"
},
"keywords": [
"intrusion detection",
"user's gaze behavior",
"user authentication",
"gaze behavior",
"illicit access",
"information flow",
"eye tracking experiment",
"eye tracking",
"users",
"tracking experiments",
"authentication",
"intruders",
"system",
"tracking",
"detection",
"discriminative results",
"access",
"features",
"gaze",
"selector",
"data",
"experiments",
"results",
"measures",
"behavior",
"flow",
"final barrier",
"unfamiliar intruders",
"barriers",
"conditions",
"stimuli",
"abuse",
"repetitive stimuli",
"paper"
],
"name": "Stimuli for Gaze Based Intrusion Detection",
"pagination": "757-763",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013484116"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-94-007-4516-2_80"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-94-007-4516-2_80",
"https://app.dimensions.ai/details/publication/pub.1013484116"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_156.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-94-007-4516-2_80"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-4516-2_80'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-4516-2_80'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-4516-2_80'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-4516-2_80'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
23 PREDICATES
59 URIs
52 LITERALS
7 BLANK NODES