The Ambiguity of Indefinites: Towards a Denotational Definition of the Weak/Strong Distinction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Carmen Dobrovie-Sorin , Claire Beyssade

ABSTRACT

This chapter proposes a refinement of Milsark’s (Linguistic Analysis 3:1–29, 1977) weak vs strong distinction: in addition to the weak reading, two types of strong readings, a quantificational and a non-quantificational one, are distinguished. Distinct representations will be proposed for each of these three readings: (i) weak indefinites refer to non specific amounts and must combine with an existential predicate. According to our implementation weak indefinites are generalized existential quantifiers over amounts; (ii) non-quantificational strong indefinites are referential expressions that are represented as Skolem terms; (iii) quantificational strong indefinites are generalized quantifiers, which we have represented in terms of tripartite configurations. More... »

PAGES

127-141

References to SciGraph publications

  • 1977-01. A unified analysis of the English bare plural in LINGUISTICS AND PHILOSOPHY
  • 1998-08. Existential Sentences without Existential Quantification in LINGUISTICS AND PHILOSOPHY
  • 1982-09. Referential and quantificational indefinites in LINGUISTICS AND PHILOSOPHY
  • 1981-06. Generalized quantifiers and natural language in LINGUISTICS AND PHILOSOPHY
  • Book

    TITLE

    Redefining Indefinites

    ISBN

    978-94-007-3001-4
    978-94-007-3002-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-007-3002-1_4

    DOI

    http://dx.doi.org/10.1007/978-94-007-3002-1_4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042348824


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire de Linguistique Formelle", 
              "id": "https://www.grid.ac/institutes/grid.463895.5", 
              "name": [
                "Laboratoire de Linguistique Formelle, University of Paris 7 UMR 7110-CNRS, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dobrovie-Sorin", 
            "givenName": "Carmen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Jean Nicod Institute, UMR 8129 CNRS, ENS, EHESS, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beyssade", 
            "givenName": "Claire", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00350139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015683908", 
              "https://doi.org/10.1007/bf00350139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00350139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015683908", 
              "https://doi.org/10.1007/bf00350139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00353456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026436655", 
              "https://doi.org/10.1007/bf00353456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00353456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026436655", 
              "https://doi.org/10.1007/bf00353456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005389330615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031721209", 
              "https://doi.org/10.1023/a:1005389330615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00351459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041326182", 
              "https://doi.org/10.1007/bf00351459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00351459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041326182", 
              "https://doi.org/10.1007/bf00351459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/probus.2007.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048866050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3765/salt.v4i0.2463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071386467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3765/salt.v7i0.2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071386535"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "This chapter proposes a refinement of Milsark\u2019s (Linguistic Analysis 3:1\u201329, 1977) weak vs strong distinction: in addition to the weak reading, two types of strong readings, a quantificational and a non-quantificational one, are distinguished. Distinct representations will be proposed for each of these three readings: (i) weak indefinites refer to non specific amounts and must combine with an existential predicate. According to our implementation weak indefinites are generalized existential quantifiers over amounts; (ii) non-quantificational strong indefinites are referential expressions that are represented as Skolem terms; (iii) quantificational strong indefinites are generalized quantifiers, which we have represented in terms of tripartite configurations.", 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-007-3002-1_4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-007-3001-4", 
            "978-94-007-3002-1"
          ], 
          "name": "Redefining Indefinites", 
          "type": "Book"
        }, 
        "name": "The Ambiguity of Indefinites: Towards a Denotational Definition of the Weak/Strong Distinction", 
        "pagination": "127-141", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-007-3002-1_4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c9b9d813d4086964ed53ba21f79d3c55ac22ac740c3cce0991fd9d1449aba5df"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042348824"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-007-3002-1_4", 
          "https://app.dimensions.ai/details/publication/pub.1042348824"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000269.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-007-3002-1_4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-3002-1_4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-3002-1_4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-3002-1_4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-3002-1_4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      22 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-007-3002-1_4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nccb68c331d0849d4b81fcd392f578ae3
    4 schema:citation sg:pub.10.1007/bf00350139
    5 sg:pub.10.1007/bf00351459
    6 sg:pub.10.1007/bf00353456
    7 sg:pub.10.1023/a:1005389330615
    8 https://doi.org/10.1515/probus.2007.008
    9 https://doi.org/10.3765/salt.v4i0.2463
    10 https://doi.org/10.3765/salt.v7i0.2796
    11 schema:datePublished 2012
    12 schema:datePublishedReg 2012-01-01
    13 schema:description This chapter proposes a refinement of Milsark’s (Linguistic Analysis 3:1–29, 1977) weak vs strong distinction: in addition to the weak reading, two types of strong readings, a quantificational and a non-quantificational one, are distinguished. Distinct representations will be proposed for each of these three readings: (i) weak indefinites refer to non specific amounts and must combine with an existential predicate. According to our implementation weak indefinites are generalized existential quantifiers over amounts; (ii) non-quantificational strong indefinites are referential expressions that are represented as Skolem terms; (iii) quantificational strong indefinites are generalized quantifiers, which we have represented in terms of tripartite configurations.
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf Nce6c63ec1b8d4c7485a85ca793d36277
    18 schema:name The Ambiguity of Indefinites: Towards a Denotational Definition of the Weak/Strong Distinction
    19 schema:pagination 127-141
    20 schema:productId N0b620bb04288423fb304f7f72f586000
    21 N69008bc303e142f7bcdd6d56f2897135
    22 Ndd0a0318424c4d618926137b9f4846a0
    23 schema:publisher Nb65e7410592b495597caad2057af83bf
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042348824
    25 https://doi.org/10.1007/978-94-007-3002-1_4
    26 schema:sdDatePublished 2019-04-15T22:57
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N66ab23d263514262bd00da41135da21b
    29 schema:url http://link.springer.com/10.1007/978-94-007-3002-1_4
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N0b620bb04288423fb304f7f72f586000 schema:name dimensions_id
    34 schema:value pub.1042348824
    35 rdf:type schema:PropertyValue
    36 N2f9de17d4c2441c1952cc78b5d0d233c schema:affiliation N7c9e57495be44d49b27d7ea323cfb000
    37 schema:familyName Beyssade
    38 schema:givenName Claire
    39 rdf:type schema:Person
    40 N49d57b29433c419a818a3ee2ec35dd04 rdf:first N2f9de17d4c2441c1952cc78b5d0d233c
    41 rdf:rest rdf:nil
    42 N66ab23d263514262bd00da41135da21b schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N69008bc303e142f7bcdd6d56f2897135 schema:name readcube_id
    45 schema:value c9b9d813d4086964ed53ba21f79d3c55ac22ac740c3cce0991fd9d1449aba5df
    46 rdf:type schema:PropertyValue
    47 N7c9e57495be44d49b27d7ea323cfb000 schema:name Jean Nicod Institute, UMR 8129 CNRS, ENS, EHESS, Paris, France
    48 rdf:type schema:Organization
    49 Na98100a2a4784bf3a8286effa2f81a7f schema:affiliation https://www.grid.ac/institutes/grid.463895.5
    50 schema:familyName Dobrovie-Sorin
    51 schema:givenName Carmen
    52 rdf:type schema:Person
    53 Nb65e7410592b495597caad2057af83bf schema:location Dordrecht
    54 schema:name Springer Netherlands
    55 rdf:type schema:Organisation
    56 Nccb68c331d0849d4b81fcd392f578ae3 rdf:first Na98100a2a4784bf3a8286effa2f81a7f
    57 rdf:rest N49d57b29433c419a818a3ee2ec35dd04
    58 Nce6c63ec1b8d4c7485a85ca793d36277 schema:isbn 978-94-007-3001-4
    59 978-94-007-3002-1
    60 schema:name Redefining Indefinites
    61 rdf:type schema:Book
    62 Ndd0a0318424c4d618926137b9f4846a0 schema:name doi
    63 schema:value 10.1007/978-94-007-3002-1_4
    64 rdf:type schema:PropertyValue
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:pub.10.1007/bf00350139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015683908
    72 https://doi.org/10.1007/bf00350139
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf00351459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041326182
    75 https://doi.org/10.1007/bf00351459
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf00353456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436655
    78 https://doi.org/10.1007/bf00353456
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1023/a:1005389330615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031721209
    81 https://doi.org/10.1023/a:1005389330615
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1515/probus.2007.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048866050
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.3765/salt.v4i0.2463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071386467
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.3765/salt.v7i0.2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071386535
    88 rdf:type schema:CreativeWork
    89 https://www.grid.ac/institutes/grid.463895.5 schema:alternateName Laboratoire de Linguistique Formelle
    90 schema:name Laboratoire de Linguistique Formelle, University of Paris 7 UMR 7110-CNRS, Paris, France
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...