On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

E. Calzavarini , A. Donini , V. Lavezzo , C. Marchioli , E. Pitton , A. Soldati , F. Toschi

ABSTRACT

The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS) (Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc) (Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties. More... »

PAGES

171-176

Book

TITLE

Direct and Large-Eddy Simulation VIII

ISBN

978-94-007-2481-5
978-94-007-2482-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27

DOI

http://dx.doi.org/10.1007/978-94-007-2482-2_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002181640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Calzavarini", 
        "givenName": "E.", 
        "id": "sg:person.01115443017.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Donini", 
        "givenName": "A.", 
        "id": "sg:person.011376040155.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376040155.54"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lavezzo", 
        "givenName": "V.", 
        "id": "sg:person.014022362307.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022362307.42"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Marchioli", 
        "givenName": "C.", 
        "id": "sg:person.01354275475.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354275475.46"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pitton", 
        "givenName": "E.", 
        "id": "sg:person.011034460307.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034460307.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Soldati", 
        "givenName": "A.", 
        "id": "sg:person.011066221363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066221363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toschi", 
        "givenName": "F.", 
        "id": "sg:person.0622324504.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622324504.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS)\u00a0(Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc)\u00a0(Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties.", 
    "editor": [
      {
        "familyName": "Kuerten", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Geurts", 
        "givenName": "Bernard", 
        "type": "Person"
      }, 
      {
        "familyName": "Armenio", 
        "givenName": "Vincenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Fr\u00f6hlich", 
        "givenName": "Jochen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-2482-2_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-2481-5", 
        "978-94-007-2482-2"
      ], 
      "name": "Direct and Large-Eddy Simulation VIII", 
      "type": "Book"
    }, 
    "keywords": [
      "large eddy simulation", 
      "direct numerical simulations", 
      "complex statistical properties", 
      "powerful simulation technique", 
      "sub-grid modeling", 
      "sub-grid scale model", 
      "turbulent flow statistics", 
      "Eulerian statistics", 
      "sub-grid model", 
      "error estimates", 
      "good statistical accuracy", 
      "statistical properties", 
      "small scale motions", 
      "statistical accuracy", 
      "flow statistics", 
      "computational cost", 
      "large-scale motions", 
      "eddy simulation", 
      "turbulent flow", 
      "simulation techniques", 
      "particle transport", 
      "particle properties", 
      "scale model", 
      "numerical simulations", 
      "scale motions", 
      "statistics", 
      "simulations", 
      "model", 
      "motion", 
      "turbulence", 
      "properties", 
      "problem", 
      "modeling", 
      "estimates", 
      "particles", 
      "flow", 
      "methodology", 
      "accuracy", 
      "performance", 
      "recent years", 
      "transport", 
      "technique", 
      "cost", 
      "demand", 
      "substitute", 
      "specific goals", 
      "way", 
      "goal", 
      "effect", 
      "use", 
      "perfect substitutes", 
      "concern", 
      "past", 
      "years", 
      "common Eulerian turbulent flow statistics", 
      "Eulerian turbulent flow statistics", 
      "turbulence demands", 
      "low order Eulerian statistics", 
      "order Eulerian statistics"
    ], 
    "name": "On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows", 
    "pagination": "171-176", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002181640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-2482-2_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-2482-2_27", 
      "https://app.dimensions.ai/details/publication/pub.1002181640"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_136.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-2482-2_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      87 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-2482-2_27 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:09
4 anzsrc-for:0915
5 schema:author N3430353ece35405fb55e54184aab365c
6 schema:datePublished 2011
7 schema:datePublishedReg 2011-01-01
8 schema:description The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS) (Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc) (Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties.
9 schema:editor N6c7b43d3f82044909145415c190f4d00
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N9132daabde11433e8d2d073514d9de19
14 schema:keywords Eulerian statistics
15 Eulerian turbulent flow statistics
16 accuracy
17 common Eulerian turbulent flow statistics
18 complex statistical properties
19 computational cost
20 concern
21 cost
22 demand
23 direct numerical simulations
24 eddy simulation
25 effect
26 error estimates
27 estimates
28 flow
29 flow statistics
30 goal
31 good statistical accuracy
32 large eddy simulation
33 large-scale motions
34 low order Eulerian statistics
35 methodology
36 model
37 modeling
38 motion
39 numerical simulations
40 order Eulerian statistics
41 particle properties
42 particle transport
43 particles
44 past
45 perfect substitutes
46 performance
47 powerful simulation technique
48 problem
49 properties
50 recent years
51 scale model
52 scale motions
53 simulation techniques
54 simulations
55 small scale motions
56 specific goals
57 statistical accuracy
58 statistical properties
59 statistics
60 sub-grid model
61 sub-grid modeling
62 sub-grid scale model
63 substitute
64 technique
65 transport
66 turbulence
67 turbulence demands
68 turbulent flow
69 turbulent flow statistics
70 use
71 way
72 years
73 schema:name On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows
74 schema:pagination 171-176
75 schema:productId N4dda8103515645b6bb55d053d7128cf3
76 Nef82940392c947488ea6188f8e5755cf
77 schema:publisher Nc6afab5f920247e9bec2413c82e6477d
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002181640
79 https://doi.org/10.1007/978-94-007-2482-2_27
80 schema:sdDatePublished 2021-11-01T18:47
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Ne5b70fb108a24b1d9810f00d97cb82f5
83 schema:url https://doi.org/10.1007/978-94-007-2482-2_27
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N0a2c240ad1674e61a99cb34eba2d5bd3 schema:familyName Geurts
88 schema:givenName Bernard
89 rdf:type schema:Person
90 N2872e2aa27134e37b331467145b5a702 rdf:first sg:person.0622324504.52
91 rdf:rest rdf:nil
92 N311df059adb94f0d8789c8ac7b17f295 rdf:first N0a2c240ad1674e61a99cb34eba2d5bd3
93 rdf:rest Nc0b8f8f98a534f298a87e96a70879310
94 N3430353ece35405fb55e54184aab365c rdf:first sg:person.01115443017.19
95 rdf:rest Ndddc989129354ee695d6af0dcb98d0f3
96 N445afbf5ad69415abfed0822ebc8d208 rdf:first sg:person.01354275475.46
97 rdf:rest N7d486cb975bf4266a54fe0e0be04d145
98 N4dda8103515645b6bb55d053d7128cf3 schema:name doi
99 schema:value 10.1007/978-94-007-2482-2_27
100 rdf:type schema:PropertyValue
101 N5091a2f5304144dfbd0bd13346792790 rdf:first sg:person.014022362307.42
102 rdf:rest N445afbf5ad69415abfed0822ebc8d208
103 N54ff7ff13380477fb7c4de0c7a6e550d schema:familyName Armenio
104 schema:givenName Vincenzo
105 rdf:type schema:Person
106 N6c7b43d3f82044909145415c190f4d00 rdf:first N9374c0f64aac422093d74010e4ae2e85
107 rdf:rest N311df059adb94f0d8789c8ac7b17f295
108 N7d486cb975bf4266a54fe0e0be04d145 rdf:first sg:person.011034460307.14
109 rdf:rest Ncc8384782a58495296962a550d007002
110 N9132daabde11433e8d2d073514d9de19 schema:isbn 978-94-007-2481-5
111 978-94-007-2482-2
112 schema:name Direct and Large-Eddy Simulation VIII
113 rdf:type schema:Book
114 N9374c0f64aac422093d74010e4ae2e85 schema:familyName Kuerten
115 schema:givenName Hans
116 rdf:type schema:Person
117 Nc0b8f8f98a534f298a87e96a70879310 rdf:first N54ff7ff13380477fb7c4de0c7a6e550d
118 rdf:rest Nf9b050b6d4144f1ba651f1b052cb1388
119 Nc6afab5f920247e9bec2413c82e6477d schema:name Springer Nature
120 rdf:type schema:Organisation
121 Ncc8384782a58495296962a550d007002 rdf:first sg:person.011066221363.98
122 rdf:rest N2872e2aa27134e37b331467145b5a702
123 Ndddc989129354ee695d6af0dcb98d0f3 rdf:first sg:person.011376040155.54
124 rdf:rest N5091a2f5304144dfbd0bd13346792790
125 Ne5b70fb108a24b1d9810f00d97cb82f5 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nef82940392c947488ea6188f8e5755cf schema:name dimensions_id
128 schema:value pub.1002181640
129 rdf:type schema:PropertyValue
130 Nf826886845024c46af0c02398c7d3679 schema:familyName Fröhlich
131 schema:givenName Jochen
132 rdf:type schema:Person
133 Nf9b050b6d4144f1ba651f1b052cb1388 rdf:first Nf826886845024c46af0c02398c7d3679
134 rdf:rest rdf:nil
135 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
136 schema:name Mathematical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
139 schema:name Statistics
140 rdf:type schema:DefinedTerm
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
145 schema:name Interdisciplinary Engineering
146 rdf:type schema:DefinedTerm
147 sg:person.011034460307.14 schema:familyName Pitton
148 schema:givenName E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034460307.14
150 rdf:type schema:Person
151 sg:person.011066221363.98 schema:familyName Soldati
152 schema:givenName A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066221363.98
154 rdf:type schema:Person
155 sg:person.01115443017.19 schema:familyName Calzavarini
156 schema:givenName E.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19
158 rdf:type schema:Person
159 sg:person.011376040155.54 schema:familyName Donini
160 schema:givenName A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376040155.54
162 rdf:type schema:Person
163 sg:person.01354275475.46 schema:familyName Marchioli
164 schema:givenName C.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354275475.46
166 rdf:type schema:Person
167 sg:person.014022362307.42 schema:familyName Lavezzo
168 schema:givenName V.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022362307.42
170 rdf:type schema:Person
171 sg:person.0622324504.52 schema:affiliation grid-institutes:grid.6852.9
172 schema:familyName Toschi
173 schema:givenName F.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622324504.52
175 rdf:type schema:Person
176 grid-institutes:grid.6852.9 schema:alternateName Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands
177 schema:name Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...