On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

E. Calzavarini , A. Donini , V. Lavezzo , C. Marchioli , E. Pitton , A. Soldati , F. Toschi

ABSTRACT

The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS) (Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc) (Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties. More... »

PAGES

171-176

Book

TITLE

Direct and Large-Eddy Simulation VIII

ISBN

978-94-007-2481-5
978-94-007-2482-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27

DOI

http://dx.doi.org/10.1007/978-94-007-2482-2_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002181640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Calzavarini", 
        "givenName": "E.", 
        "id": "sg:person.01115443017.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Donini", 
        "givenName": "A.", 
        "id": "sg:person.011376040155.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376040155.54"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lavezzo", 
        "givenName": "V.", 
        "id": "sg:person.014022362307.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022362307.42"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Marchioli", 
        "givenName": "C.", 
        "id": "sg:person.01354275475.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354275475.46"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pitton", 
        "givenName": "E.", 
        "id": "sg:person.011034460307.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034460307.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Soldati", 
        "givenName": "A.", 
        "id": "sg:person.011066221363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066221363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toschi", 
        "givenName": "F.", 
        "id": "sg:person.0622324504.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622324504.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS)\u00a0(Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc)\u00a0(Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties.", 
    "editor": [
      {
        "familyName": "Kuerten", 
        "givenName": "Hans", 
        "type": "Person"
      }, 
      {
        "familyName": "Geurts", 
        "givenName": "Bernard", 
        "type": "Person"
      }, 
      {
        "familyName": "Armenio", 
        "givenName": "Vincenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Fr\u00f6hlich", 
        "givenName": "Jochen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-2482-2_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-2481-5", 
        "978-94-007-2482-2"
      ], 
      "name": "Direct and Large-Eddy Simulation VIII", 
      "type": "Book"
    }, 
    "keywords": [
      "large eddy simulation", 
      "direct numerical simulations", 
      "complex statistical properties", 
      "powerful simulation technique", 
      "sub-grid modeling", 
      "sub-grid scale model", 
      "turbulent flow statistics", 
      "Eulerian statistics", 
      "sub-grid model", 
      "error estimates", 
      "good statistical accuracy", 
      "statistical properties", 
      "small scale motions", 
      "statistical accuracy", 
      "flow statistics", 
      "computational cost", 
      "large-scale motions", 
      "eddy simulation", 
      "turbulent flow", 
      "simulation techniques", 
      "particle transport", 
      "particle properties", 
      "scale model", 
      "numerical simulations", 
      "scale motions", 
      "statistics", 
      "simulations", 
      "model", 
      "motion", 
      "turbulence", 
      "properties", 
      "problem", 
      "modeling", 
      "estimates", 
      "particles", 
      "flow", 
      "methodology", 
      "accuracy", 
      "performance", 
      "recent years", 
      "transport", 
      "technique", 
      "cost", 
      "demand", 
      "substitute", 
      "specific goals", 
      "way", 
      "goal", 
      "effect", 
      "use", 
      "perfect substitutes", 
      "concern", 
      "past", 
      "years", 
      "common Eulerian turbulent flow statistics", 
      "Eulerian turbulent flow statistics", 
      "turbulence demands", 
      "low order Eulerian statistics", 
      "order Eulerian statistics"
    ], 
    "name": "On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows", 
    "pagination": "171-176", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002181640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-2482-2_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-2482-2_27", 
      "https://app.dimensions.ai/details/publication/pub.1002181640"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_155.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-2482-2_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2482-2_27'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      87 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-2482-2_27 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 anzsrc-for:09
4 anzsrc-for:0915
5 schema:author N503eebb015b24d86b745683d74ea793e
6 schema:datePublished 2011
7 schema:datePublishedReg 2011-01-01
8 schema:description The use of Large Eddy Simulation (LES) has emerged in recent years as a powerful simulation technique with the specific goal of achieving a good statistical accuracy while retaining a computational cost lower than Direct Numerical Simulations (DNS) (Sagaut, 2006). In LES, only large-scale motions are directly computed (resolved on the computational grid) while small scale motions are not computed explicitly but modeled via Sub-Grid Scale (SGS) models. Due to the complex statistical properties of turbulence, many models and methodologies have been proposed in the past. Although none of the proposed models can be considered a perfect substitute to DNS, their performance can be sometimes considered fairly accurate for what concerns the most common Eulerian turbulent flow statistics. The problem of particle transport in turbulence demands much more to LES than just reproducing low order Eulerian statistics (e.g. spectra, average profiles etc) (Salazar and Collins, 2009; Toschi and Bodenschatz, 2009). Here we propose a way to quantify the effect of (the error due to) sub-grid modeling on particle properties.
9 schema:editor N0401e58405af41f692e5b8df9e0ee07a
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N183342de739d44cbbf2b6eb6829f37ed
14 schema:keywords Eulerian statistics
15 Eulerian turbulent flow statistics
16 accuracy
17 common Eulerian turbulent flow statistics
18 complex statistical properties
19 computational cost
20 concern
21 cost
22 demand
23 direct numerical simulations
24 eddy simulation
25 effect
26 error estimates
27 estimates
28 flow
29 flow statistics
30 goal
31 good statistical accuracy
32 large eddy simulation
33 large-scale motions
34 low order Eulerian statistics
35 methodology
36 model
37 modeling
38 motion
39 numerical simulations
40 order Eulerian statistics
41 particle properties
42 particle transport
43 particles
44 past
45 perfect substitutes
46 performance
47 powerful simulation technique
48 problem
49 properties
50 recent years
51 scale model
52 scale motions
53 simulation techniques
54 simulations
55 small scale motions
56 specific goals
57 statistical accuracy
58 statistical properties
59 statistics
60 sub-grid model
61 sub-grid modeling
62 sub-grid scale model
63 substitute
64 technique
65 transport
66 turbulence
67 turbulence demands
68 turbulent flow
69 turbulent flow statistics
70 use
71 way
72 years
73 schema:name On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows
74 schema:pagination 171-176
75 schema:productId N2f7710f00a8747ebb9c1eec419b54087
76 N79c13373f69b442ca00e37c23c749a34
77 schema:publisher Nf5dff3cee8074bac8c950fd7aba3a294
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002181640
79 https://doi.org/10.1007/978-94-007-2482-2_27
80 schema:sdDatePublished 2022-01-01T19:09
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nab884c443712476797ecb007e3acf8ee
83 schema:url https://doi.org/10.1007/978-94-007-2482-2_27
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N0401e58405af41f692e5b8df9e0ee07a rdf:first Nd8cd2fd336f0486f8162327c29058858
88 rdf:rest N7de938ec7bca44998e10addfa30d1aa1
89 N05520acec32142d9a93717ab7144d634 rdf:first Nafa9dacab4c94335ae6bcd10b0bf955d
90 rdf:rest Ne67251f0ed46473b9b7b1b39f6853abb
91 N0d07c791d64c4d01b881feeccd1d3152 rdf:first sg:person.011376040155.54
92 rdf:rest Nc3040a3c61e04b5e9c25fc16bd4ff81b
93 N183342de739d44cbbf2b6eb6829f37ed schema:isbn 978-94-007-2481-5
94 978-94-007-2482-2
95 schema:name Direct and Large-Eddy Simulation VIII
96 rdf:type schema:Book
97 N2f7710f00a8747ebb9c1eec419b54087 schema:name doi
98 schema:value 10.1007/978-94-007-2482-2_27
99 rdf:type schema:PropertyValue
100 N503eebb015b24d86b745683d74ea793e rdf:first sg:person.01115443017.19
101 rdf:rest N0d07c791d64c4d01b881feeccd1d3152
102 N79c13373f69b442ca00e37c23c749a34 schema:name dimensions_id
103 schema:value pub.1002181640
104 rdf:type schema:PropertyValue
105 N7a78a84b62bb4682807c9f02de75acf0 rdf:first sg:person.0622324504.52
106 rdf:rest rdf:nil
107 N7de938ec7bca44998e10addfa30d1aa1 rdf:first Neafcb45dc39449379ff010534c16a1d6
108 rdf:rest N05520acec32142d9a93717ab7144d634
109 N90c3bc40cf854c77bceee0363656fac1 rdf:first sg:person.011066221363.98
110 rdf:rest N7a78a84b62bb4682807c9f02de75acf0
111 Na1a9b96b1eb444429114bebd61652e7c rdf:first sg:person.011034460307.14
112 rdf:rest N90c3bc40cf854c77bceee0363656fac1
113 Nab884c443712476797ecb007e3acf8ee schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nafa9dacab4c94335ae6bcd10b0bf955d schema:familyName Armenio
116 schema:givenName Vincenzo
117 rdf:type schema:Person
118 Nc3040a3c61e04b5e9c25fc16bd4ff81b rdf:first sg:person.014022362307.42
119 rdf:rest Nf53a6fba119949539f291ea9f32a7362
120 Nd4adbeb5c5c24537bf77550d9026e87f schema:familyName Fröhlich
121 schema:givenName Jochen
122 rdf:type schema:Person
123 Nd8cd2fd336f0486f8162327c29058858 schema:familyName Kuerten
124 schema:givenName Hans
125 rdf:type schema:Person
126 Ne67251f0ed46473b9b7b1b39f6853abb rdf:first Nd4adbeb5c5c24537bf77550d9026e87f
127 rdf:rest rdf:nil
128 Neafcb45dc39449379ff010534c16a1d6 schema:familyName Geurts
129 schema:givenName Bernard
130 rdf:type schema:Person
131 Nf53a6fba119949539f291ea9f32a7362 rdf:first sg:person.01354275475.46
132 rdf:rest Na1a9b96b1eb444429114bebd61652e7c
133 Nf5dff3cee8074bac8c950fd7aba3a294 schema:name Springer Nature
134 rdf:type schema:Organisation
135 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
136 schema:name Mathematical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
139 schema:name Statistics
140 rdf:type schema:DefinedTerm
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
145 schema:name Interdisciplinary Engineering
146 rdf:type schema:DefinedTerm
147 sg:person.011034460307.14 schema:familyName Pitton
148 schema:givenName E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034460307.14
150 rdf:type schema:Person
151 sg:person.011066221363.98 schema:familyName Soldati
152 schema:givenName A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066221363.98
154 rdf:type schema:Person
155 sg:person.01115443017.19 schema:familyName Calzavarini
156 schema:givenName E.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19
158 rdf:type schema:Person
159 sg:person.011376040155.54 schema:familyName Donini
160 schema:givenName A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011376040155.54
162 rdf:type schema:Person
163 sg:person.01354275475.46 schema:familyName Marchioli
164 schema:givenName C.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354275475.46
166 rdf:type schema:Person
167 sg:person.014022362307.42 schema:familyName Lavezzo
168 schema:givenName V.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014022362307.42
170 rdf:type schema:Person
171 sg:person.0622324504.52 schema:affiliation grid-institutes:grid.6852.9
172 schema:familyName Toschi
173 schema:givenName F.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622324504.52
175 rdf:type schema:Person
176 grid-institutes:grid.6852.9 schema:alternateName Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands
177 schema:name Eindhoven University of Technology, 513, 5600 MB, Eindhoven, The Netherlands
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...