Hematopoietic Stem Cell Repopulation After Transplantation: Role of Vinculin View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-09-06

AUTHORS

Tsukasa Ohmori , Yoichi Sakata

ABSTRACT

Hematopoietic stem cells (HSCs) are the most thoroughly characterized type of stem cells, and reconstitution of the hematopoietic system after HSC transplantation has demonstrated the self-renewal and differentiation capabilities of stem cells in vivo. HSCs must undergo several steps to achieve reconstitution after transplantation, e.g., homing to the bone marrow, lodging in the bone marrow niche, and proliferation and multilineage differentiation (repopulation). Identification of the factors required for HSCs to perform these reconstitution functions might improve our understanding of stem cell biology, as well as leading to more efficient HSC transplantation protocols. The gold standard for analyzing the function of target genes in HSCs is the creation of gene-deficient, knockout mice by gene targeting, while silencing of target gene expression by RNA interference is an attractive alternative strategy. In this chapter, we will explain the RNA interference methods available for silencing genes in HSCs using lentiviral vectors, and discuss the role of vinculin in HSC repopulation after transplantation. More... »

PAGES

103-110

Book

TITLE

Stem Cells and Cancer Stem Cells, Volume 2

ISBN

978-94-007-2015-2
978-94-007-2016-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-2016-9_11

DOI

http://dx.doi.org/10.1007/978-94-007-2016-9_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029249192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohmori", 
        "givenName": "Tsukasa", 
        "id": "sg:person.011616744632.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616744632.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakata", 
        "givenName": "Yoichi", 
        "id": "sg:person.011653372052.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653372052.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-09-06", 
    "datePublishedReg": "2011-09-06", 
    "description": "Hematopoietic stem cells (HSCs) are the most thoroughly characterized type of stem cells, and reconstitution of the hematopoietic system after HSC transplantation has demonstrated the self-renewal and differentiation capabilities of stem cells in vivo. HSCs must undergo several steps to achieve reconstitution after transplantation, e.g., homing to the bone marrow, lodging in the bone marrow niche, and proliferation and multilineage differentiation (repopulation). Identification of the factors required for HSCs to perform these reconstitution functions might improve our understanding of stem cell biology, as well as leading to more efficient HSC transplantation protocols. The gold standard for analyzing the function of target genes in HSCs is the creation of gene-deficient, knockout mice by gene targeting, while silencing of target gene expression by RNA interference is an attractive alternative strategy. In this chapter, we will explain the RNA interference methods available for silencing genes in HSCs using lentiviral vectors, and discuss the role of vinculin in HSC repopulation after transplantation.", 
    "editor": [
      {
        "familyName": "Hayat", 
        "givenName": "M.A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-2016-9_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-2015-2", 
        "978-94-007-2016-9"
      ], 
      "name": "Stem Cells and Cancer Stem Cells, Volume 2", 
      "type": "Book"
    }, 
    "keywords": [
      "role of vinculin", 
      "hematopoietic stem cells", 
      "stem cells", 
      "hematopoietic stem cell repopulation", 
      "stem cell biology", 
      "target gene expression", 
      "RNA interference method", 
      "bone marrow niche", 
      "cell biology", 
      "target genes", 
      "RNA interference", 
      "gene targeting", 
      "gene expression", 
      "stem cell repopulation", 
      "multilineage differentiation", 
      "marrow niche", 
      "reconstitution function", 
      "hematopoietic system", 
      "HSC repopulation", 
      "differentiation capability", 
      "lentiviral vectors", 
      "vinculin", 
      "attractive alternative strategy", 
      "genes", 
      "interference method", 
      "knockout mice", 
      "cells", 
      "HSC transplantation", 
      "reconstitution", 
      "bone marrow", 
      "niche", 
      "biology", 
      "differentiation", 
      "alternative strategy", 
      "role", 
      "transplantation protocols", 
      "expression", 
      "proliferation", 
      "targeting", 
      "cell repopulation", 
      "repopulation", 
      "interference", 
      "vivo", 
      "function", 
      "identification", 
      "protocol", 
      "mice", 
      "marrow", 
      "capability", 
      "vector", 
      "understanding", 
      "factors", 
      "step", 
      "types", 
      "strategies", 
      "method", 
      "system", 
      "chapter", 
      "standards", 
      "gold standard", 
      "transplantation", 
      "creation"
    ], 
    "name": "Hematopoietic Stem Cell Repopulation After Transplantation: Role of Vinculin", 
    "pagination": "103-110", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029249192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-2016-9_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-2016-9_11", 
      "https://app.dimensions.ai/details/publication/pub.1029249192"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_376.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-2016-9_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2016-9_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2016-9_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2016-9_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-2016-9_11'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      85 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-2016-9_11 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ne84106dbab58490b9027eb6dd391ba6a
4 schema:datePublished 2011-09-06
5 schema:datePublishedReg 2011-09-06
6 schema:description Hematopoietic stem cells (HSCs) are the most thoroughly characterized type of stem cells, and reconstitution of the hematopoietic system after HSC transplantation has demonstrated the self-renewal and differentiation capabilities of stem cells in vivo. HSCs must undergo several steps to achieve reconstitution after transplantation, e.g., homing to the bone marrow, lodging in the bone marrow niche, and proliferation and multilineage differentiation (repopulation). Identification of the factors required for HSCs to perform these reconstitution functions might improve our understanding of stem cell biology, as well as leading to more efficient HSC transplantation protocols. The gold standard for analyzing the function of target genes in HSCs is the creation of gene-deficient, knockout mice by gene targeting, while silencing of target gene expression by RNA interference is an attractive alternative strategy. In this chapter, we will explain the RNA interference methods available for silencing genes in HSCs using lentiviral vectors, and discuss the role of vinculin in HSC repopulation after transplantation.
7 schema:editor N2c851c2b15654926a281ddc2b648808f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N2f99a8877c654035ac5e7618344cbcee
11 schema:keywords HSC repopulation
12 HSC transplantation
13 RNA interference
14 RNA interference method
15 alternative strategy
16 attractive alternative strategy
17 biology
18 bone marrow
19 bone marrow niche
20 capability
21 cell biology
22 cell repopulation
23 cells
24 chapter
25 creation
26 differentiation
27 differentiation capability
28 expression
29 factors
30 function
31 gene expression
32 gene targeting
33 genes
34 gold standard
35 hematopoietic stem cell repopulation
36 hematopoietic stem cells
37 hematopoietic system
38 identification
39 interference
40 interference method
41 knockout mice
42 lentiviral vectors
43 marrow
44 marrow niche
45 method
46 mice
47 multilineage differentiation
48 niche
49 proliferation
50 protocol
51 reconstitution
52 reconstitution function
53 repopulation
54 role
55 role of vinculin
56 standards
57 stem cell biology
58 stem cell repopulation
59 stem cells
60 step
61 strategies
62 system
63 target gene expression
64 target genes
65 targeting
66 transplantation
67 transplantation protocols
68 types
69 understanding
70 vector
71 vinculin
72 vivo
73 schema:name Hematopoietic Stem Cell Repopulation After Transplantation: Role of Vinculin
74 schema:pagination 103-110
75 schema:productId N3f7719a8d4d9409b932e56937e378385
76 N6a10a3e8400c4c7f8fb003d689e4691e
77 schema:publisher Nfb442591820d44478c2e1a9158dd977a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029249192
79 https://doi.org/10.1007/978-94-007-2016-9_11
80 schema:sdDatePublished 2022-09-02T16:15
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N304e4344fcfe4adca73c948853900488
83 schema:url https://doi.org/10.1007/978-94-007-2016-9_11
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N2c851c2b15654926a281ddc2b648808f rdf:first Nb4c58385b146498cb550739fe5b14f43
88 rdf:rest rdf:nil
89 N2f99a8877c654035ac5e7618344cbcee schema:isbn 978-94-007-2015-2
90 978-94-007-2016-9
91 schema:name Stem Cells and Cancer Stem Cells, Volume 2
92 rdf:type schema:Book
93 N304e4344fcfe4adca73c948853900488 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N3f7719a8d4d9409b932e56937e378385 schema:name dimensions_id
96 schema:value pub.1029249192
97 rdf:type schema:PropertyValue
98 N6a10a3e8400c4c7f8fb003d689e4691e schema:name doi
99 schema:value 10.1007/978-94-007-2016-9_11
100 rdf:type schema:PropertyValue
101 N93bf9c65270b46ba82f8e27280fa93e2 rdf:first sg:person.011653372052.41
102 rdf:rest rdf:nil
103 Nb4c58385b146498cb550739fe5b14f43 schema:familyName Hayat
104 schema:givenName M.A.
105 rdf:type schema:Person
106 Ne84106dbab58490b9027eb6dd391ba6a rdf:first sg:person.011616744632.77
107 rdf:rest N93bf9c65270b46ba82f8e27280fa93e2
108 Nfb442591820d44478c2e1a9158dd977a schema:name Springer Nature
109 rdf:type schema:Organisation
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:person.011616744632.77 schema:affiliation grid-institutes:grid.410804.9
117 schema:familyName Ohmori
118 schema:givenName Tsukasa
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616744632.77
120 rdf:type schema:Person
121 sg:person.011653372052.41 schema:affiliation grid-institutes:grid.410804.9
122 schema:familyName Sakata
123 schema:givenName Yoichi
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653372052.41
125 rdf:type schema:Person
126 grid-institutes:grid.410804.9 schema:alternateName Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan
127 schema:name Research Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, 329-0498, Shimotsuke, Tochigi, Japan
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...