System Dynamics at the Physiological and Tumour Level View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-08-20

AUTHORS

Robert A. Gatenby

ABSTRACT

Cancers are complex dynamical systems dominated by non-linear processes. As a result, most critical system parameters exhibit significant temporal and spatial heterogeneity. This variability, while critical to the ability of cancers to adapt to a wide range of environmental perturbations including therapy, tends to be lost in molecular-level data which is typically an ‘average’ value for large numbers of heterogeneous tumour cells obtained at a single time point. The role of mathematical modelling in cancers at a tumour level is to identify the first principles that govern tumour growth, invasion, metastases, and response to therapy. Tumour biologists and oncologists often dismiss quantitative methods with the statement that cancer is ‘too complex’ for mathematical modelling. In fact, lessons from the history of physical sciences demonstrate that the opposite is true. While complex systems may be difficult to model, they are impossible to understand intuitively. Biologically realistic mathematical models are necessary to transform the reductionist approach of modern cancer biology into comprehensive models of the host-cancer interactions that govern the dynamics of tumour growth and therapy. More... »

PAGES

309-326

References to SciGraph publications

Book

TITLE

Cancer Systems Biology, Bioinformatics and Medicine

ISBN

978-94-007-1566-0
978-94-007-1567-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-1567-7_12

DOI

http://dx.doi.org/10.1007/978-94-007-1567-7_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013078010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Departments of Radiology and Integrative Mathematical Oncology, Moffitt Cancer Center, Tampa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatenby", 
        "givenName": "Robert A.", 
        "id": "sg:person.01251663701.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.bjc.6603922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001659310", 
          "https://doi.org/10.1038/sj.bjc.6603922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/420462b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288366", 
          "https://doi.org/10.1038/420462b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/420462b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005288366", 
          "https://doi.org/10.1038/420462b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.92.24.11130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009434803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90186-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020604215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4713-1_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812528", 
          "https://doi.org/10.1007/978-0-8176-4713-1_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4713-1_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812528", 
          "https://doi.org/10.1007/978-0-8176-4713-1_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470032898.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023047046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/421321a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030324519", 
          "https://doi.org/10.1038/421321a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/421321a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030324519", 
          "https://doi.org/10.1038/421321a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032257073", 
          "https://doi.org/10.1038/nrc1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032257073", 
          "https://doi.org/10.1038/nrc1478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611179104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033707703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0213-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244228", 
          "https://doi.org/10.1007/s00285-008-0213-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-008-0213-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244228", 
          "https://doi.org/10.1007/s00285-008-0213-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1955.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043829956", 
          "https://doi.org/10.1038/bjc.1955.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1955.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043829956", 
          "https://doi.org/10.1038/bjc.1955.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051767321", 
          "https://doi.org/10.1038/nrc2329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1954.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357442", 
          "https://doi.org/10.1038/bjc.1954.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.1954.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357442", 
          "https://doi.org/10.1038/bjc.1954.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3892/ijo.32.4.729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071516806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076581572", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08-20", 
    "datePublishedReg": "2011-08-20", 
    "description": "Cancers are complex dynamical systems dominated by non-linear processes. As a result, most critical system parameters exhibit significant temporal and spatial heterogeneity. This variability, while critical to the ability of cancers to adapt to a wide range of environmental perturbations including therapy, tends to be lost in molecular-level data which is typically an \u2018average\u2019 value for large numbers of heterogeneous tumour cells obtained at a single time point. The role of mathematical modelling in cancers at a tumour level is to identify the first principles that govern tumour growth, invasion, metastases, and response to therapy. Tumour biologists and oncologists often dismiss quantitative methods with the statement that cancer is \u2018too complex\u2019 for mathematical modelling. In fact, lessons from the history of physical sciences demonstrate that the opposite is true. While complex systems may be difficult to model, they are impossible to understand intuitively. Biologically realistic mathematical models are necessary to transform the reductionist approach of modern cancer biology into comprehensive models of the host-cancer interactions that govern the dynamics of tumour growth and therapy.", 
    "editor": [
      {
        "familyName": "Cesario", 
        "givenName": "Alfredo", 
        "type": "Person"
      }, 
      {
        "familyName": "Marcus", 
        "givenName": "Frederick", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-1567-7_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-1566-0", 
        "978-94-007-1567-7"
      ], 
      "name": "Cancer Systems Biology, Bioinformatics and Medicine", 
      "type": "Book"
    }, 
    "name": "System Dynamics at the Physiological and Tumour Level", 
    "pagination": "309-326", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013078010"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-1567-7_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3e4d0f2fad3bdea8757fbc0b711d5d5784d64068e7126dc4041dfcc9bbff82c6"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-1567-7_12", 
      "https://app.dimensions.ai/details/publication/pub.1013078010"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-007-1567-7_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-1567-7_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-1567-7_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-1567-7_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-1567-7_12'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      41 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-1567-7_12 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ncc15fbcc4d814651a066202b1e4d1cd4
4 schema:citation sg:pub.10.1007/978-0-8176-4713-1_17
5 sg:pub.10.1007/s00285-008-0213-z
6 sg:pub.10.1038/420462b
7 sg:pub.10.1038/421321a
8 sg:pub.10.1038/bjc.1954.1
9 sg:pub.10.1038/bjc.1955.55
10 sg:pub.10.1038/nrc1478
11 sg:pub.10.1038/nrc2329
12 sg:pub.10.1038/sj.bjc.6603922
13 https://app.dimensions.ai/details/publication/pub.1076581572
14 https://doi.org/10.1002/0470032898.ch5
15 https://doi.org/10.1016/0092-8674(90)90186-i
16 https://doi.org/10.1073/pnas.0611179104
17 https://doi.org/10.1073/pnas.92.24.11130
18 https://doi.org/10.3892/ijo.32.4.729
19 schema:datePublished 2011-08-20
20 schema:datePublishedReg 2011-08-20
21 schema:description Cancers are complex dynamical systems dominated by non-linear processes. As a result, most critical system parameters exhibit significant temporal and spatial heterogeneity. This variability, while critical to the ability of cancers to adapt to a wide range of environmental perturbations including therapy, tends to be lost in molecular-level data which is typically an ‘average’ value for large numbers of heterogeneous tumour cells obtained at a single time point. The role of mathematical modelling in cancers at a tumour level is to identify the first principles that govern tumour growth, invasion, metastases, and response to therapy. Tumour biologists and oncologists often dismiss quantitative methods with the statement that cancer is ‘too complex’ for mathematical modelling. In fact, lessons from the history of physical sciences demonstrate that the opposite is true. While complex systems may be difficult to model, they are impossible to understand intuitively. Biologically realistic mathematical models are necessary to transform the reductionist approach of modern cancer biology into comprehensive models of the host-cancer interactions that govern the dynamics of tumour growth and therapy.
22 schema:editor N91b766f572044739a5f098d893b3b8c1
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Na637bea385d141b9968fabc5bb714948
27 schema:name System Dynamics at the Physiological and Tumour Level
28 schema:pagination 309-326
29 schema:productId N4f6c74fa99a4476caed6a4113f4b8668
30 Na0ce301ab9084da98d05357fb6dfd3f5
31 Nb7c9b6fe61044b67a1930a9ce8e81250
32 schema:publisher N5552e52af4184598b49b390d507d0d56
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013078010
34 https://doi.org/10.1007/978-94-007-1567-7_12
35 schema:sdDatePublished 2019-04-16T09:02
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N6de84df5994242fa815cf338fd1d542f
38 schema:url https://link.springer.com/10.1007%2F978-94-007-1567-7_12
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N062504faa9784db5b6fa16946e394b78 schema:familyName Marcus
43 schema:givenName Frederick
44 rdf:type schema:Person
45 N4f6c74fa99a4476caed6a4113f4b8668 schema:name dimensions_id
46 schema:value pub.1013078010
47 rdf:type schema:PropertyValue
48 N5552e52af4184598b49b390d507d0d56 schema:location Dordrecht
49 schema:name Springer Netherlands
50 rdf:type schema:Organisation
51 N5cb3d84f5ca4416e969226159912a11c rdf:first N062504faa9784db5b6fa16946e394b78
52 rdf:rest rdf:nil
53 N6de84df5994242fa815cf338fd1d542f schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N91b766f572044739a5f098d893b3b8c1 rdf:first Ne6bae3e89ac54051aff27b82bee483cb
56 rdf:rest N5cb3d84f5ca4416e969226159912a11c
57 Na0ce301ab9084da98d05357fb6dfd3f5 schema:name doi
58 schema:value 10.1007/978-94-007-1567-7_12
59 rdf:type schema:PropertyValue
60 Na637bea385d141b9968fabc5bb714948 schema:isbn 978-94-007-1566-0
61 978-94-007-1567-7
62 schema:name Cancer Systems Biology, Bioinformatics and Medicine
63 rdf:type schema:Book
64 Nb7c9b6fe61044b67a1930a9ce8e81250 schema:name readcube_id
65 schema:value 3e4d0f2fad3bdea8757fbc0b711d5d5784d64068e7126dc4041dfcc9bbff82c6
66 rdf:type schema:PropertyValue
67 Ncc15fbcc4d814651a066202b1e4d1cd4 rdf:first sg:person.01251663701.28
68 rdf:rest rdf:nil
69 Ne6bae3e89ac54051aff27b82bee483cb schema:familyName Cesario
70 schema:givenName Alfredo
71 rdf:type schema:Person
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
76 schema:name Applied Mathematics
77 rdf:type schema:DefinedTerm
78 sg:person.01251663701.28 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
79 schema:familyName Gatenby
80 schema:givenName Robert A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251663701.28
82 rdf:type schema:Person
83 sg:pub.10.1007/978-0-8176-4713-1_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812528
84 https://doi.org/10.1007/978-0-8176-4713-1_17
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00285-008-0213-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040244228
87 https://doi.org/10.1007/s00285-008-0213-z
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/420462b schema:sameAs https://app.dimensions.ai/details/publication/pub.1005288366
90 https://doi.org/10.1038/420462b
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/421321a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030324519
93 https://doi.org/10.1038/421321a
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/bjc.1954.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357442
96 https://doi.org/10.1038/bjc.1954.1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/bjc.1955.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043829956
99 https://doi.org/10.1038/bjc.1955.55
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nrc1478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032257073
102 https://doi.org/10.1038/nrc1478
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/nrc2329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051767321
105 https://doi.org/10.1038/nrc2329
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/sj.bjc.6603922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001659310
108 https://doi.org/10.1038/sj.bjc.6603922
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1076581572 schema:CreativeWork
111 https://doi.org/10.1002/0470032898.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023047046
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0092-8674(90)90186-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1020604215
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.0611179104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033707703
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.92.24.11130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009434803
118 rdf:type schema:CreativeWork
119 https://doi.org/10.3892/ijo.32.4.729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071516806
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
122 schema:name Departments of Radiology and Integrative Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...