Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-07-25

AUTHORS

Guillermina Forno , Caroline Didier , Marina Etcheverrigaray , Héctor Goicoechea , Ricardo Kratje

ABSTRACT

Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor. More... »

PAGES

351-354

Book

TITLE

Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009

ISBN

978-94-007-0883-9
978-94-007-0884-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55

DOI

http://dx.doi.org/10.1007/978-94-007-0884-6_55

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020063969


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina", 
            "Zelltek S.A, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forno", 
        "givenName": "Guillermina", 
        "id": "sg:person.01016573310.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016573310.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Didier", 
        "givenName": "Caroline", 
        "id": "sg:person.012500754735.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500754735.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etcheverrigaray", 
        "givenName": "Marina", 
        "id": "sg:person.01133021710.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133021710.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kratje", 
        "givenName": "Ricardo", 
        "id": "sg:person.01064706510.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064706510.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chemolab.2006.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005485715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/abab:135:1:81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019306041", 
          "https://doi.org/10.1385/abab:135:1:81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1980.11980968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101183642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-25", 
    "datePublishedReg": "2011-07-25", 
    "description": "Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor.", 
    "editor": [
      {
        "familyName": "Jenkins", 
        "givenName": "Nigel", 
        "type": "Person"
      }, 
      {
        "familyName": "Barron", 
        "givenName": "Niall", 
        "type": "Person"
      }, 
      {
        "familyName": "Alves", 
        "givenName": "Paula", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-0884-6_55", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-0883-9", 
        "978-94-007-0884-6"
      ], 
      "name": "Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009", 
      "type": "Book"
    }, 
    "name": "Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization", 
    "pagination": "351-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020063969"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-0884-6_55"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f98d81cc9a3ea4bf3ce2d9cb7ceee617dd43bfdb23927caa78ab5354f5f0dbe"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-0884-6_55", 
      "https://app.dimensions.ai/details/publication/pub.1020063969"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-007-0884-6_55"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      29 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-0884-6_55 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N4d9b3fe219d24d3a97f4aba5c5a79a27
4 schema:citation sg:pub.10.1385/abab:135:1:81
5 https://doi.org/10.1016/j.chemolab.2006.07.007
6 https://doi.org/10.1080/00224065.1980.11980968
7 schema:datePublished 2011-07-25
8 schema:datePublishedReg 2011-07-25
9 schema:description Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor.
10 schema:editor Nb033a31ebc8141de8bc9fe307c788bf9
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na33759731b0849eba966f620024cec10
15 schema:name Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization
16 schema:pagination 351-354
17 schema:productId N0194fbda90484fd88cbe84d5d49fb3f7
18 N20ccd47e144440298cd0f6c8cc7bb88a
19 Nbf81aaeb393843fcbb89ab7d7b514b5e
20 schema:publisher Nf0ca2915993c4959a0f899091d55643c
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020063969
22 https://doi.org/10.1007/978-94-007-0884-6_55
23 schema:sdDatePublished 2019-04-16T09:21
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N9ec82e6d948b44f5b236fc79f5d835a1
26 schema:url https://link.springer.com/10.1007%2F978-94-007-0884-6_55
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0194fbda90484fd88cbe84d5d49fb3f7 schema:name dimensions_id
31 schema:value pub.1020063969
32 rdf:type schema:PropertyValue
33 N096b92e39bae4b0e9ae85f67dfd70317 rdf:first Nece0fb04c6b44eca9d4c3b26e40d6f4b
34 rdf:rest N90f4ec22537c4dc78f8591a8bd1dc390
35 N20ccd47e144440298cd0f6c8cc7bb88a schema:name doi
36 schema:value 10.1007/978-94-007-0884-6_55
37 rdf:type schema:PropertyValue
38 N4ad905cecd45472b9fbab7c983f45931 rdf:first sg:person.01064706510.72
39 rdf:rest rdf:nil
40 N4d9b3fe219d24d3a97f4aba5c5a79a27 rdf:first sg:person.01016573310.65
41 rdf:rest N973abe4f63b84e2ea1e46a35f7f61821
42 N54ac2242fc2744c1a71950e5506d4b1d rdf:first sg:person.01133021710.19
43 rdf:rest N80ee26bf6a104224b790cd24fe251901
44 N656da7589b344ea9a915fcb42aa1c3c8 schema:familyName Jenkins
45 schema:givenName Nigel
46 rdf:type schema:Person
47 N80ee26bf6a104224b790cd24fe251901 rdf:first sg:person.0754117262.29
48 rdf:rest N4ad905cecd45472b9fbab7c983f45931
49 N881dc170d67b443da030525191a369ac schema:familyName Alves
50 schema:givenName Paula
51 rdf:type schema:Person
52 N90f4ec22537c4dc78f8591a8bd1dc390 rdf:first N881dc170d67b443da030525191a369ac
53 rdf:rest rdf:nil
54 N973abe4f63b84e2ea1e46a35f7f61821 rdf:first sg:person.012500754735.24
55 rdf:rest N54ac2242fc2744c1a71950e5506d4b1d
56 N9ec82e6d948b44f5b236fc79f5d835a1 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Na33759731b0849eba966f620024cec10 schema:isbn 978-94-007-0883-9
59 978-94-007-0884-6
60 schema:name Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009
61 rdf:type schema:Book
62 Nb033a31ebc8141de8bc9fe307c788bf9 rdf:first N656da7589b344ea9a915fcb42aa1c3c8
63 rdf:rest N096b92e39bae4b0e9ae85f67dfd70317
64 Nbf81aaeb393843fcbb89ab7d7b514b5e schema:name readcube_id
65 schema:value 5f98d81cc9a3ea4bf3ce2d9cb7ceee617dd43bfdb23927caa78ab5354f5f0dbe
66 rdf:type schema:PropertyValue
67 Nece0fb04c6b44eca9d4c3b26e40d6f4b schema:familyName Barron
68 schema:givenName Niall
69 rdf:type schema:Person
70 Nf0ca2915993c4959a0f899091d55643c schema:location Dordrecht
71 schema:name Springer Netherlands
72 rdf:type schema:Organisation
73 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biological Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biochemistry and Cell Biology
78 rdf:type schema:DefinedTerm
79 sg:person.01016573310.65 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
80 schema:familyName Forno
81 schema:givenName Guillermina
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016573310.65
83 rdf:type schema:Person
84 sg:person.01064706510.72 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
85 schema:familyName Kratje
86 schema:givenName Ricardo
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064706510.72
88 rdf:type schema:Person
89 sg:person.01133021710.19 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
90 schema:familyName Etcheverrigaray
91 schema:givenName Marina
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133021710.19
93 rdf:type schema:Person
94 sg:person.012500754735.24 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
95 schema:familyName Didier
96 schema:givenName Caroline
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500754735.24
98 rdf:type schema:Person
99 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
100 schema:familyName Goicoechea
101 schema:givenName Héctor
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
103 rdf:type schema:Person
104 sg:pub.10.1385/abab:135:1:81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019306041
105 https://doi.org/10.1385/abab:135:1:81
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.chemolab.2006.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005485715
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/00224065.1980.11980968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101183642
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
112 schema:name Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
113 Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
114 Zelltek S.A, Santa Fe, Argentina
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...