Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-07-25

AUTHORS

Guillermina Forno , Caroline Didier , Marina Etcheverrigaray , Héctor Goicoechea , Ricardo Kratje

ABSTRACT

Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor. More... »

PAGES

351-354

Book

TITLE

Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009

ISBN

978-94-007-0883-9
978-94-007-0884-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55

DOI

http://dx.doi.org/10.1007/978-94-007-0884-6_55

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020063969


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina", 
            "Zelltek S.A, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forno", 
        "givenName": "Guillermina", 
        "id": "sg:person.01016573310.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016573310.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Didier", 
        "givenName": "Caroline", 
        "id": "sg:person.012500754735.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500754735.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Etcheverrigaray", 
        "givenName": "Marina", 
        "id": "sg:person.01133021710.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133021710.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Desarrollo Anal\u00edtico y Quimiometr\u00eda (LADAQ), Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goicoechea", 
        "givenName": "H\u00e9ctor", 
        "id": "sg:person.0754117262.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of the Littoral", 
          "id": "https://www.grid.ac/institutes/grid.10798.37", 
          "name": [
            "Laboratorio de Cultivos Celulares, Facultad de Bioqu\u00edmica y Ciencias Biol\u00f3gicas, Universidad Nacional del Litoral, Santa Fe, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kratje", 
        "givenName": "Ricardo", 
        "id": "sg:person.01064706510.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064706510.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chemolab.2006.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005485715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/abab:135:1:81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019306041", 
          "https://doi.org/10.1385/abab:135:1:81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224065.1980.11980968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101183642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-25", 
    "datePublishedReg": "2011-07-25", 
    "description": "Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor.", 
    "editor": [
      {
        "familyName": "Jenkins", 
        "givenName": "Nigel", 
        "type": "Person"
      }, 
      {
        "familyName": "Barron", 
        "givenName": "Niall", 
        "type": "Person"
      }, 
      {
        "familyName": "Alves", 
        "givenName": "Paula", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-0884-6_55", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-0883-9", 
        "978-94-007-0884-6"
      ], 
      "name": "Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009", 
      "type": "Book"
    }, 
    "name": "Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization", 
    "pagination": "351-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020063969"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-0884-6_55"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f98d81cc9a3ea4bf3ce2d9cb7ceee617dd43bfdb23927caa78ab5354f5f0dbe"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-0884-6_55", 
      "https://app.dimensions.ai/details/publication/pub.1020063969"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-94-007-0884-6_55"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0884-6_55'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      29 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-0884-6_55 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6dc34aa21c294c9b9ccbeb4debfbaa3b
4 schema:citation sg:pub.10.1385/abab:135:1:81
5 https://doi.org/10.1016/j.chemolab.2006.07.007
6 https://doi.org/10.1080/00224065.1980.11980968
7 schema:datePublished 2011-07-25
8 schema:datePublishedReg 2011-07-25
9 schema:description Although many commercially available cell culture media exist, none of them are able to optimally meet the specific requirements of every cell line used for large-scale recombinant protein production. Through a novel approach to develop a medium for culturing genetically engineered mammalian cells, the optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined. The aim of this work was to define the composition of two different serum-free culture media by testing two groups of compounds that are added to a basal formulation, through a crossed mixture design. The goals pursued were to maximize the quantity of active secreting cells the productivity and the quality of the secreted molecule (in terms of glycosylation) while minimizing toxic accumulation of catabolites during the culture, using both batch and continuous processes. Empirical data obtained from crossed mixture design were used to train artificial neural networks for each response. Two artificial neural networks were selected for each response and used to predict the responses for 800 new combinations of H1, H2, H3, E1, E2, and E3. These predicted responses were combined to calculate a Global Desirability Function (D). The combinations of the six components which originated the highest values of function D were chosen to be tested in a continuous process in a 5 L-perfused bioreactor.
10 schema:editor Na8daa3fc9991410199568fda99917058
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N107717fed251490c864c8e2b6a2298d9
15 schema:name Crossed Mixture Design and Artificial Neural Networks: An Efficient Approach to Cell Culture Medium Optimization
16 schema:pagination 351-354
17 schema:productId N20e6a37d4f44454dbb4b555de98511c9
18 N7c9630c8db9d4aedbdb7510ada4a6901
19 Nd3328db77039427a90296c527ffcbe43
20 schema:publisher Nf7cc7fc8a25140949739cbef851458ab
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020063969
22 https://doi.org/10.1007/978-94-007-0884-6_55
23 schema:sdDatePublished 2019-04-16T09:21
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N1869b05710e24559983ab2fdc9200f7c
26 schema:url https://link.springer.com/10.1007%2F978-94-007-0884-6_55
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N107717fed251490c864c8e2b6a2298d9 schema:isbn 978-94-007-0883-9
31 978-94-007-0884-6
32 schema:name Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009
33 rdf:type schema:Book
34 N1869b05710e24559983ab2fdc9200f7c schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N20e6a37d4f44454dbb4b555de98511c9 schema:name readcube_id
37 schema:value 5f98d81cc9a3ea4bf3ce2d9cb7ceee617dd43bfdb23927caa78ab5354f5f0dbe
38 rdf:type schema:PropertyValue
39 N42b7707a2d5e4db79e8c6cd85f8e6d00 rdf:first sg:person.0754117262.29
40 rdf:rest N4c7eeeb564aa4e5c954600c956049c8e
41 N4c7eeeb564aa4e5c954600c956049c8e rdf:first sg:person.01064706510.72
42 rdf:rest rdf:nil
43 N519b539b752b47fab1cb0b31498b5fc4 rdf:first sg:person.01133021710.19
44 rdf:rest N42b7707a2d5e4db79e8c6cd85f8e6d00
45 N6cbe0ec9b9ff4b9a9ceae58a92e31613 rdf:first N8373c5ab534b4bc397efa17fa52b3181
46 rdf:rest rdf:nil
47 N6dc34aa21c294c9b9ccbeb4debfbaa3b rdf:first sg:person.01016573310.65
48 rdf:rest N80dcb79e9b5843628378ec1ac770d3af
49 N7c9630c8db9d4aedbdb7510ada4a6901 schema:name doi
50 schema:value 10.1007/978-94-007-0884-6_55
51 rdf:type schema:PropertyValue
52 N80dcb79e9b5843628378ec1ac770d3af rdf:first sg:person.012500754735.24
53 rdf:rest N519b539b752b47fab1cb0b31498b5fc4
54 N8373c5ab534b4bc397efa17fa52b3181 schema:familyName Alves
55 schema:givenName Paula
56 rdf:type schema:Person
57 Na73255910b0940eea4e722ffc2d04d6d schema:familyName Barron
58 schema:givenName Niall
59 rdf:type schema:Person
60 Na8daa3fc9991410199568fda99917058 rdf:first Nd7cd057f3db341cabe60bc5f0c3ccee9
61 rdf:rest Nfa715a0b720a458a903131f5319e5a49
62 Nd3328db77039427a90296c527ffcbe43 schema:name dimensions_id
63 schema:value pub.1020063969
64 rdf:type schema:PropertyValue
65 Nd7cd057f3db341cabe60bc5f0c3ccee9 schema:familyName Jenkins
66 schema:givenName Nigel
67 rdf:type schema:Person
68 Nf7cc7fc8a25140949739cbef851458ab schema:location Dordrecht
69 schema:name Springer Netherlands
70 rdf:type schema:Organisation
71 Nfa715a0b720a458a903131f5319e5a49 rdf:first Na73255910b0940eea4e722ffc2d04d6d
72 rdf:rest N6cbe0ec9b9ff4b9a9ceae58a92e31613
73 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biological Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biochemistry and Cell Biology
78 rdf:type schema:DefinedTerm
79 sg:person.01016573310.65 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
80 schema:familyName Forno
81 schema:givenName Guillermina
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016573310.65
83 rdf:type schema:Person
84 sg:person.01064706510.72 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
85 schema:familyName Kratje
86 schema:givenName Ricardo
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064706510.72
88 rdf:type schema:Person
89 sg:person.01133021710.19 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
90 schema:familyName Etcheverrigaray
91 schema:givenName Marina
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133021710.19
93 rdf:type schema:Person
94 sg:person.012500754735.24 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
95 schema:familyName Didier
96 schema:givenName Caroline
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012500754735.24
98 rdf:type schema:Person
99 sg:person.0754117262.29 schema:affiliation https://www.grid.ac/institutes/grid.10798.37
100 schema:familyName Goicoechea
101 schema:givenName Héctor
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754117262.29
103 rdf:type schema:Person
104 sg:pub.10.1385/abab:135:1:81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019306041
105 https://doi.org/10.1385/abab:135:1:81
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.chemolab.2006.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005485715
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/00224065.1980.11980968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101183642
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.10798.37 schema:alternateName National University of the Littoral
112 schema:name Laboratorio de Cultivos Celulares, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
113 Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
114 Zelltek S.A, Santa Fe, Argentina
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...