Intermolecular Interactions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Alston J. Misquitta

ABSTRACT

Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods. More... »

PAGES

157-193

Book

TITLE

Handbook of Computational Chemistry

ISBN

978-94-007-0710-8
978-94-007-0711-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-0711-5_6

DOI

http://dx.doi.org/10.1007/978-94-007-0711-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013802317


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misquitta", 
        "givenName": "Alston J.", 
        "id": "sg:person.01360374013.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360374013.40"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams\u2013Stone\u2013Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods.", 
    "editor": [
      {
        "familyName": "Leszczynski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-0711-5_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-0710-8", 
        "978-94-007-0711-5"
      ], 
      "name": "Handbook of Computational Chemistry", 
      "type": "Book"
    }, 
    "keywords": [
      "intermolecular interactions", 
      "van der Waals interactions", 
      "small organic molecules", 
      "fields of physics", 
      "accurate ab initio methods", 
      "der Waals interactions", 
      "symmetry-adapted perturbation theory", 
      "ab initio methods", 
      "electronic structure methods", 
      "density functional theory", 
      "Misquitta method", 
      "Williams\u2013Stone", 
      "low computational cost", 
      "organic molecules", 
      "physical systems", 
      "numerical aspects", 
      "Waals interactions", 
      "perturbation theory", 
      "initio methods", 
      "computational cost", 
      "functional theory", 
      "interaction energy", 
      "molecular properties", 
      "structure methods", 
      "molecular interactions", 
      "range of problems", 
      "number of phenomena", 
      "accurate description", 
      "recent applications", 
      "theory", 
      "predictive theoretical model", 
      "theoretical model", 
      "high accuracy", 
      "chemistry", 
      "physics", 
      "recent developments", 
      "field", 
      "molecules", 
      "interaction", 
      "atoms", 
      "accuracy", 
      "problem", 
      "system", 
      "properties", 
      "description", 
      "model", 
      "method", 
      "energy", 
      "phenomenon", 
      "applications", 
      "range", 
      "number", 
      "form", 
      "cost", 
      "chapter", 
      "biology", 
      "goal", 
      "aspects", 
      "development", 
      "understanding"
    ], 
    "name": "Intermolecular Interactions", 
    "pagination": "157-193", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013802317"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-0711-5_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-0711-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1013802317"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_387.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-0711-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0711-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0711-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0711-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0711-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      23 PREDICATES      86 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-0711-5_6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:0307
4 schema:author N45846d9224194763a30f9c7b4c2edc2a
5 schema:datePublished 2012
6 schema:datePublishedReg 2012-01-01
7 schema:description Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods.
8 schema:editor N2027973e383646fe9bc9e321f8900937
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N41d2cc5fdc58446aad4ecf81c0a70f48
13 schema:keywords Misquitta method
14 Waals interactions
15 Williams–Stone
16 ab initio methods
17 accuracy
18 accurate ab initio methods
19 accurate description
20 applications
21 aspects
22 atoms
23 biology
24 chapter
25 chemistry
26 computational cost
27 cost
28 density functional theory
29 der Waals interactions
30 description
31 development
32 electronic structure methods
33 energy
34 field
35 fields of physics
36 form
37 functional theory
38 goal
39 high accuracy
40 initio methods
41 interaction
42 interaction energy
43 intermolecular interactions
44 low computational cost
45 method
46 model
47 molecular interactions
48 molecular properties
49 molecules
50 number
51 number of phenomena
52 numerical aspects
53 organic molecules
54 perturbation theory
55 phenomenon
56 physical systems
57 physics
58 predictive theoretical model
59 problem
60 properties
61 range
62 range of problems
63 recent applications
64 recent developments
65 small organic molecules
66 structure methods
67 symmetry-adapted perturbation theory
68 system
69 theoretical model
70 theory
71 understanding
72 van der Waals interactions
73 schema:name Intermolecular Interactions
74 schema:pagination 157-193
75 schema:productId N3a282200c38341d082f785b470276dcf
76 Nef2d96cc76ba4c198d6e3891dcf869d1
77 schema:publisher N241a07a7e1f6484f882e65fe6b56a85d
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013802317
79 https://doi.org/10.1007/978-94-007-0711-5_6
80 schema:sdDatePublished 2022-06-01T22:34
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N280b834b6559461eb19d56ca752ddbba
83 schema:url https://doi.org/10.1007/978-94-007-0711-5_6
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N2027973e383646fe9bc9e321f8900937 rdf:first N5eea31946c1e4b93a17349b372b80f0d
88 rdf:rest rdf:nil
89 N241a07a7e1f6484f882e65fe6b56a85d schema:name Springer Nature
90 rdf:type schema:Organisation
91 N280b834b6559461eb19d56ca752ddbba schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N3a282200c38341d082f785b470276dcf schema:name dimensions_id
94 schema:value pub.1013802317
95 rdf:type schema:PropertyValue
96 N41d2cc5fdc58446aad4ecf81c0a70f48 schema:isbn 978-94-007-0710-8
97 978-94-007-0711-5
98 schema:name Handbook of Computational Chemistry
99 rdf:type schema:Book
100 N45846d9224194763a30f9c7b4c2edc2a rdf:first sg:person.01360374013.40
101 rdf:rest rdf:nil
102 N5eea31946c1e4b93a17349b372b80f0d schema:familyName Leszczynski
103 schema:givenName Jerzy
104 rdf:type schema:Person
105 Nef2d96cc76ba4c198d6e3891dcf869d1 schema:name doi
106 schema:value 10.1007/978-94-007-0711-5_6
107 rdf:type schema:PropertyValue
108 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Chemistry (incl. Structural)
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
115 schema:name Theoretical and Computational Chemistry
116 rdf:type schema:DefinedTerm
117 sg:person.01360374013.40 schema:affiliation grid-institutes:None
118 schema:familyName Misquitta
119 schema:givenName Alston J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360374013.40
121 rdf:type schema:Person
122 grid-institutes:None schema:alternateName TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK
123 schema:name TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...