SPECT Lung Delineation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Alex Wang , Hong Yan

ABSTRACT

This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets. More... »

PAGES

307-317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25

DOI

http://dx.doi.org/10.1007/978-94-007-0286-8_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015882690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Alex", 
        "id": "sg:person.015361314055.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361314055.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hong", 
        "id": "sg:person.01320030737.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320030737.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets.", 
    "editor": [
      {
        "familyName": "Ao", 
        "givenName": "Sio-Iong", 
        "type": "Person"
      }, 
      {
        "familyName": "Castillo", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Xu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-0286-8_25", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-0285-1", 
        "978-94-007-0286-8"
      ], 
      "name": "Intelligent Control and Computer Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "maximum count values", 
      "dynamic thresholding method", 
      "image processing techniques", 
      "total count values", 
      "active contours", 
      "significant dataset", 
      "thresholding method", 
      "processing techniques", 
      "actual delineation", 
      "dataset", 
      "lung contours", 
      "quantitative validation", 
      "subject scans", 
      "background noise", 
      "delineation methods", 
      "qualitative verification", 
      "verification", 
      "tomography lung scans", 
      "contours", 
      "simulations", 
      "count values", 
      "experienced physicians", 
      "method", 
      "review paper", 
      "noise", 
      "technique", 
      "validation", 
      "fashion", 
      "delineation", 
      "scans", 
      "quest", 
      "values", 
      "single photon emission", 
      "emission", 
      "removal", 
      "lung scan", 
      "physicians", 
      "agreement", 
      "photon emission", 
      "study", 
      "paper"
    ], 
    "name": "SPECT Lung Delineation", 
    "pagination": "307-317", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015882690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-0286-8_25"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-0286-8_25", 
      "https://app.dimensions.ai/details/publication/pub.1015882690"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_390.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-0286-8_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-0286-8_25 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N371196093e9145f6b5f058a4f6b5bf13
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets.
7 schema:editor N0b857c8e1aee4ddeac924190faa770fc
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3eb3767539d447739ca8e58b32db7be2
11 schema:keywords active contours
12 actual delineation
13 agreement
14 background noise
15 contours
16 count values
17 dataset
18 delineation
19 delineation methods
20 dynamic thresholding method
21 emission
22 experienced physicians
23 fashion
24 image processing techniques
25 lung contours
26 lung scan
27 maximum count values
28 method
29 noise
30 paper
31 photon emission
32 physicians
33 processing techniques
34 qualitative verification
35 quantitative validation
36 quest
37 removal
38 review paper
39 scans
40 significant dataset
41 simulations
42 single photon emission
43 study
44 subject scans
45 technique
46 thresholding method
47 tomography lung scans
48 total count values
49 validation
50 values
51 verification
52 schema:name SPECT Lung Delineation
53 schema:pagination 307-317
54 schema:productId N081691df71f24c9280343b89a3142177
55 Nc8b353ddd9ba498c9d02fd12a1a5118a
56 schema:publisher Nd71d2ab1a53d41afb8b423ab43b265a2
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015882690
58 https://doi.org/10.1007/978-94-007-0286-8_25
59 schema:sdDatePublished 2022-09-02T16:15
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N21c29974d3234a4a9da6a0aac1d5d973
62 schema:url https://doi.org/10.1007/978-94-007-0286-8_25
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N081691df71f24c9280343b89a3142177 schema:name doi
67 schema:value 10.1007/978-94-007-0286-8_25
68 rdf:type schema:PropertyValue
69 N0b857c8e1aee4ddeac924190faa770fc rdf:first N65ead54b1ea949e6b0786ec166148786
70 rdf:rest N15b7bb1e261b47448216a9d324bba1a5
71 N15b7bb1e261b47448216a9d324bba1a5 rdf:first N4ad2a5191dbc44a0babffff3d7053c5e
72 rdf:rest N79b6f32c6d664873ba0838664e0d6618
73 N21c29974d3234a4a9da6a0aac1d5d973 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N2c2329f92ecf475b8b7bf378d711e1e3 schema:familyName Huang
76 schema:givenName Xu
77 rdf:type schema:Person
78 N371196093e9145f6b5f058a4f6b5bf13 rdf:first sg:person.015361314055.90
79 rdf:rest Nd8209bd05ae74f6b83dde1012c4cb21b
80 N3eb3767539d447739ca8e58b32db7be2 schema:isbn 978-94-007-0285-1
81 978-94-007-0286-8
82 schema:name Intelligent Control and Computer Engineering
83 rdf:type schema:Book
84 N4ad2a5191dbc44a0babffff3d7053c5e schema:familyName Castillo
85 schema:givenName Oscar
86 rdf:type schema:Person
87 N65ead54b1ea949e6b0786ec166148786 schema:familyName Ao
88 schema:givenName Sio-Iong
89 rdf:type schema:Person
90 N79b6f32c6d664873ba0838664e0d6618 rdf:first N2c2329f92ecf475b8b7bf378d711e1e3
91 rdf:rest rdf:nil
92 Nc8b353ddd9ba498c9d02fd12a1a5118a schema:name dimensions_id
93 schema:value pub.1015882690
94 rdf:type schema:PropertyValue
95 Nd71d2ab1a53d41afb8b423ab43b265a2 schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nd8209bd05ae74f6b83dde1012c4cb21b rdf:first sg:person.01320030737.17
98 rdf:rest rdf:nil
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.01320030737.17 schema:affiliation grid-institutes:grid.35030.35
106 schema:familyName Yan
107 schema:givenName Hong
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320030737.17
109 rdf:type schema:Person
110 sg:person.015361314055.90 schema:affiliation grid-institutes:grid.1013.3
111 schema:familyName Wang
112 schema:givenName Alex
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361314055.90
114 rdf:type schema:Person
115 grid-institutes:grid.1013.3 schema:alternateName School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia
116 schema:name School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia
117 rdf:type schema:Organization
118 grid-institutes:grid.35030.35 schema:alternateName Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
119 schema:name Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...