SPECT Lung Delineation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Alex Wang , Hong Yan

ABSTRACT

This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets. More... »

PAGES

307-317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25

DOI

http://dx.doi.org/10.1007/978-94-007-0286-8_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015882690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Alex", 
        "id": "sg:person.015361314055.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361314055.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Hong", 
        "id": "sg:person.01320030737.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320030737.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets.", 
    "editor": [
      {
        "familyName": "Ao", 
        "givenName": "Sio-Iong", 
        "type": "Person"
      }, 
      {
        "familyName": "Castillo", 
        "givenName": "Oscar", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Xu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-94-007-0286-8_25", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-94-007-0285-1", 
        "978-94-007-0286-8"
      ], 
      "name": "Intelligent Control and Computer Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "maximum count values", 
      "dynamic thresholding method", 
      "image processing techniques", 
      "total count values", 
      "active contours", 
      "significant dataset", 
      "thresholding method", 
      "processing techniques", 
      "actual delineation", 
      "dataset", 
      "lung contours", 
      "quantitative validation", 
      "subject scans", 
      "background noise", 
      "delineation methods", 
      "qualitative verification", 
      "verification", 
      "tomography lung scans", 
      "contours", 
      "simulations", 
      "count values", 
      "experienced physicians", 
      "method", 
      "review paper", 
      "noise", 
      "technique", 
      "validation", 
      "fashion", 
      "delineation", 
      "scans", 
      "quest", 
      "values", 
      "single photon emission", 
      "emission", 
      "removal", 
      "lung scan", 
      "physicians", 
      "agreement", 
      "photon emission", 
      "study", 
      "paper"
    ], 
    "name": "SPECT Lung Delineation", 
    "pagination": "307-317", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015882690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-94-007-0286-8_25"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-94-007-0286-8_25", 
      "https://app.dimensions.ai/details/publication/pub.1015882690"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_464.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-94-007-0286-8_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0286-8_25'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-94-007-0286-8_25 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nce2cc47b963446e5a00396e514d67d72
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description This is a review paper of our quest in developing and implementing an automated three-dimensional (3D) lung delineation method capable of handling single photon emission computed tomography (SPECT) lung scans with defective contours and/or varying maximum count value (MCV) and total count value (TCV). Six clinically significant datasets consisting of simulations and real subject scans are used consistently throughout our studies. We first develop a dynamic thresholding method which allows removal of background noise in a 3D volumetric fashion. Next, we implement 3D image processing techniques to enhance the SPECT lung contours. Finally, we develop 3D active contours to perform actual delineation. Quantitative validation using known-volume simulations and qualitative verification via experienced physicians are done to evaluate the methods. We achieve over 90% agreement on average throughout all six datasets.
7 schema:editor N730c7f540c45499191aa5f9ac6ee5a64
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N9fd66d39206d49ae9e1e5ff0c4b8914f
11 schema:keywords active contours
12 actual delineation
13 agreement
14 background noise
15 contours
16 count values
17 dataset
18 delineation
19 delineation methods
20 dynamic thresholding method
21 emission
22 experienced physicians
23 fashion
24 image processing techniques
25 lung contours
26 lung scan
27 maximum count values
28 method
29 noise
30 paper
31 photon emission
32 physicians
33 processing techniques
34 qualitative verification
35 quantitative validation
36 quest
37 removal
38 review paper
39 scans
40 significant dataset
41 simulations
42 single photon emission
43 study
44 subject scans
45 technique
46 thresholding method
47 tomography lung scans
48 total count values
49 validation
50 values
51 verification
52 schema:name SPECT Lung Delineation
53 schema:pagination 307-317
54 schema:productId N02d74b344eef4e858a7d7668007baef5
55 N14c0cdda65d24823b92d6b5f97f49cee
56 schema:publisher N5f16d4c98e4f4cc48b06ada782884e2b
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015882690
58 https://doi.org/10.1007/978-94-007-0286-8_25
59 schema:sdDatePublished 2022-10-01T06:59
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N16915f73d5b44f3ca9fded7e96b547f4
62 schema:url https://doi.org/10.1007/978-94-007-0286-8_25
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N02d74b344eef4e858a7d7668007baef5 schema:name doi
67 schema:value 10.1007/978-94-007-0286-8_25
68 rdf:type schema:PropertyValue
69 N14c0cdda65d24823b92d6b5f97f49cee schema:name dimensions_id
70 schema:value pub.1015882690
71 rdf:type schema:PropertyValue
72 N16915f73d5b44f3ca9fded7e96b547f4 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N5f16d4c98e4f4cc48b06ada782884e2b schema:name Springer Nature
75 rdf:type schema:Organisation
76 N66295d5f082b4316ba95275e515a1833 schema:familyName Castillo
77 schema:givenName Oscar
78 rdf:type schema:Person
79 N71df9ad691834546bce972903751ffd3 rdf:first Na1d79f6df5bb484f9ed4f9c9bfc5729d
80 rdf:rest rdf:nil
81 N730c7f540c45499191aa5f9ac6ee5a64 rdf:first N899b19afd2804b6f84462f3e7ee4e4c3
82 rdf:rest Na1c750786c7341a0826c2266b26cbaa2
83 N899b19afd2804b6f84462f3e7ee4e4c3 schema:familyName Ao
84 schema:givenName Sio-Iong
85 rdf:type schema:Person
86 N9fd66d39206d49ae9e1e5ff0c4b8914f schema:isbn 978-94-007-0285-1
87 978-94-007-0286-8
88 schema:name Intelligent Control and Computer Engineering
89 rdf:type schema:Book
90 Na1c750786c7341a0826c2266b26cbaa2 rdf:first N66295d5f082b4316ba95275e515a1833
91 rdf:rest N71df9ad691834546bce972903751ffd3
92 Na1d79f6df5bb484f9ed4f9c9bfc5729d schema:familyName Huang
93 schema:givenName Xu
94 rdf:type schema:Person
95 Na6000650fc424e7d941cb41ccd3d50cb rdf:first sg:person.01320030737.17
96 rdf:rest rdf:nil
97 Nce2cc47b963446e5a00396e514d67d72 rdf:first sg:person.015361314055.90
98 rdf:rest Na6000650fc424e7d941cb41ccd3d50cb
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.01320030737.17 schema:affiliation grid-institutes:grid.35030.35
106 schema:familyName Yan
107 schema:givenName Hong
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320030737.17
109 rdf:type schema:Person
110 sg:person.015361314055.90 schema:affiliation grid-institutes:grid.1013.3
111 schema:familyName Wang
112 schema:givenName Alex
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361314055.90
114 rdf:type schema:Person
115 grid-institutes:grid.1013.3 schema:alternateName School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia
116 schema:name School of Electrical and Information Engineering, The University of Sydney, N.S.W. 2006, Sydney, Australia
117 rdf:type schema:Organization
118 grid-institutes:grid.35030.35 schema:alternateName Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
119 schema:name Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...