Mathematical Models of Quantum Computer View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Masanori Ohya , I. Volovich , Igor Volovich

ABSTRACT

A quantum computer is usually modeled mathematically as a Quantum Turing Machine (QTM) or a uniform family of quantum circuits, which is equivalent to a quantum Turing machine. QTM is a quantum version of the classical Turing machine described in Chap. 2. QTM was introduced by Deutsch and has been extensively studied by Bernstein and Vasirani. The basic properties of the quantum Turing machine and quantum circuits will be described in this chapter. In the last section of the present chapter, we introduce a generalized QTM. More... »

PAGES

313-329

References to SciGraph publications

  • 2005-09. On Halting Process of Quantum Turing Machine in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • 2000-03. NP Problem in Quantum Algorithm in OPEN SYSTEMS AND INFORMATION DYNAMICS
  • Book

    TITLE

    Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

    ISBN

    978-94-007-0170-0
    978-94-007-0171-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-94-007-0171-7_11

    DOI

    http://dx.doi.org/10.1007/978-94-007-0171-7_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051680191


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Information Sciences, Tokyo University of Science, Yamazaki 2641, 278-8510\u00a0Noda, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohya", 
            "givenName": "Masanori", 
            "id": "sg:person.013365420775.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Volovich", 
            "givenName": "I.", 
            "id": "sg:person.016103555657.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103555657.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Mathematical Physics, Steklov Mathematical Institute, Gubkin St 8, 119991\u00a0Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Volovich", 
            "givenName": "Igor", 
            "id": "sg:person.016077072551.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077072551.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2008.05.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004088916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009651417615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012766077", 
              "https://doi.org/10.1023/a:1009651417615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/167088.167097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017900571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4877(03)90002-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024115457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0375-9601(02)00015-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026886034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1989.0099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030130365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.3457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036486855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.52.3457", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036486855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11080-005-0923-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051375834", 
              "https://doi.org/10.1007/s11080-005-0923-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/ita:2000123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056972083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.1823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.1823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0097539795293172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812774491_0017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096066220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812793171_0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096069391"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011", 
        "datePublishedReg": "2011-01-01", 
        "description": "A quantum computer is usually modeled mathematically as a Quantum Turing Machine (QTM) or a uniform family of quantum circuits, which is equivalent to a quantum Turing machine. QTM is a quantum version of the classical Turing machine described in Chap.\u00a02. QTM was introduced by Deutsch and has been extensively studied by Bernstein and Vasirani. The basic properties of the quantum Turing machine and quantum circuits will be described in this chapter. In the last section of the present chapter, we introduce a generalized QTM.", 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-94-007-0171-7_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-94-007-0170-0", 
            "978-94-007-0171-7"
          ], 
          "name": "Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems", 
          "type": "Book"
        }, 
        "name": "Mathematical Models of Quantum Computer", 
        "pagination": "313-329", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-94-007-0171-7_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f62d9f30a9a27fdb5751ce64ef0bcc8e0bb24153e9ca184ea86247a063bb8e7a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051680191"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-94-007-0171-7_11", 
          "https://app.dimensions.ai/details/publication/pub.1051680191"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000595.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-94-007-0171-7_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0171-7_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0171-7_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0171-7_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-94-007-0171-7_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-94-007-0171-7_11 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N7393de30389a49f59262b506c90bdf4f
    4 schema:citation sg:pub.10.1007/s11080-005-0923-2
    5 sg:pub.10.1023/a:1009651417615
    6 https://doi.org/10.1016/j.physleta.2008.05.069
    7 https://doi.org/10.1016/s0034-4877(03)90002-4
    8 https://doi.org/10.1016/s0375-9601(02)00015-4
    9 https://doi.org/10.1051/ita:2000123
    10 https://doi.org/10.1098/rspa.1989.0099
    11 https://doi.org/10.1103/physreva.52.3457
    12 https://doi.org/10.1103/physrevlett.78.1823
    13 https://doi.org/10.1103/physrevlett.79.325
    14 https://doi.org/10.1137/s0097539795293172
    15 https://doi.org/10.1142/9789812774491_0017
    16 https://doi.org/10.1142/9789812793171_0010
    17 https://doi.org/10.1145/167088.167097
    18 schema:datePublished 2011
    19 schema:datePublishedReg 2011-01-01
    20 schema:description A quantum computer is usually modeled mathematically as a Quantum Turing Machine (QTM) or a uniform family of quantum circuits, which is equivalent to a quantum Turing machine. QTM is a quantum version of the classical Turing machine described in Chap. 2. QTM was introduced by Deutsch and has been extensively studied by Bernstein and Vasirani. The basic properties of the quantum Turing machine and quantum circuits will be described in this chapter. In the last section of the present chapter, we introduce a generalized QTM.
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N24dbb6b8f2374d258f1b8e7e04755b0c
    25 schema:name Mathematical Models of Quantum Computer
    26 schema:pagination 313-329
    27 schema:productId N86ac92c85871439598e09c4559acc1fe
    28 Na84e19fd61494fcf96bff8b56afae062
    29 Nb012df8cf5ae4646b4c430a83c51cbe9
    30 schema:publisher N4b33a8d69ea5468ca3e591e55002f873
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051680191
    32 https://doi.org/10.1007/978-94-007-0171-7_11
    33 schema:sdDatePublished 2019-04-15T13:09
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N9ad16d0968fd42cca3c3352f41d3e0fd
    36 schema:url http://link.springer.com/10.1007/978-94-007-0171-7_11
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N24dbb6b8f2374d258f1b8e7e04755b0c schema:isbn 978-94-007-0170-0
    41 978-94-007-0171-7
    42 schema:name Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems
    43 rdf:type schema:Book
    44 N4b33a8d69ea5468ca3e591e55002f873 schema:location Dordrecht
    45 schema:name Springer Netherlands
    46 rdf:type schema:Organisation
    47 N7393de30389a49f59262b506c90bdf4f rdf:first sg:person.013365420775.41
    48 rdf:rest Na4b9bfe2a7bc4820bfc78155e84681bf
    49 N86ac92c85871439598e09c4559acc1fe schema:name readcube_id
    50 schema:value f62d9f30a9a27fdb5751ce64ef0bcc8e0bb24153e9ca184ea86247a063bb8e7a
    51 rdf:type schema:PropertyValue
    52 N9ad16d0968fd42cca3c3352f41d3e0fd schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Na4b9bfe2a7bc4820bfc78155e84681bf rdf:first sg:person.016103555657.94
    55 rdf:rest Nce7ddd8728174373a295ec6345fb7d9c
    56 Na84e19fd61494fcf96bff8b56afae062 schema:name doi
    57 schema:value 10.1007/978-94-007-0171-7_11
    58 rdf:type schema:PropertyValue
    59 Nb012df8cf5ae4646b4c430a83c51cbe9 schema:name dimensions_id
    60 schema:value pub.1051680191
    61 rdf:type schema:PropertyValue
    62 Nce7ddd8728174373a295ec6345fb7d9c rdf:first sg:person.016077072551.02
    63 rdf:rest rdf:nil
    64 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Quantum Physics
    69 rdf:type schema:DefinedTerm
    70 sg:person.013365420775.41 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    71 schema:familyName Ohya
    72 schema:givenName Masanori
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
    74 rdf:type schema:Person
    75 sg:person.016077072551.02 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    76 schema:familyName Volovich
    77 schema:givenName Igor
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016077072551.02
    79 rdf:type schema:Person
    80 sg:person.016103555657.94 schema:familyName Volovich
    81 schema:givenName I.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103555657.94
    83 rdf:type schema:Person
    84 sg:pub.10.1007/s11080-005-0923-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051375834
    85 https://doi.org/10.1007/s11080-005-0923-2
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1023/a:1009651417615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012766077
    88 https://doi.org/10.1023/a:1009651417615
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.physleta.2008.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004088916
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0034-4877(03)90002-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024115457
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0375-9601(02)00015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026886034
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1051/ita:2000123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056972083
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1098/rspa.1989.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030130365
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physreva.52.3457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486855
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevlett.78.1823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814832
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevlett.79.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002540107
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1137/s0097539795293172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880065
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1142/9789812774491_0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096066220
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1142/9789812793171_0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096069391
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1145/167088.167097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017900571
    113 rdf:type schema:CreativeWork
    114 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
    115 schema:name Information Sciences, Tokyo University of Science, Yamazaki 2641, 278-8510 Noda, Japan
    116 rdf:type schema:Organization
    117 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    118 schema:name Mathematical Physics, Steklov Mathematical Institute, Gubkin St 8, 119991 Moscow, Russia
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...