Automated Fitting of an Elastokinematic Surrogate Mechanism for Forearm Motion from MRI Measurements View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-05-04

AUTHORS

J. Xu , P. Kasten , A. Weinberg , A. Kecskeméthy

ABSTRACT

Forearm rotation (pro-supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This paper regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) imaging is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and fitting the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation. More... »

PAGES

349-358

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-9262-5_37

DOI

http://dx.doi.org/10.1007/978-90-481-9262-5_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017820320


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Orthopaedic Surgery, University of Dresden, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Department of Orthopaedic Surgery, University of Dresden, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasten", 
        "givenName": "P.", 
        "id": "sg:person.01230416560.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230416560.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department for Pediatric Surgery, University of Graz, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5110.5", 
          "name": [
            "Department for Pediatric Surgery, University of Graz, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinberg", 
        "givenName": "A.", 
        "id": "sg:person.0670372065.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670372065.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kecskem\u00e9thy", 
        "givenName": "A.", 
        "id": "sg:person.013651734266.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651734266.13"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2010-05-04", 
    "datePublishedReg": "2010-05-04", 
    "description": "Forearm rotation (pro-supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This paper regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) imaging is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and fitting the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation.", 
    "editor": [
      {
        "familyName": "Lenarcic", 
        "givenName": "Jadran", 
        "type": "Person"
      }, 
      {
        "familyName": "Stanisic", 
        "givenName": "Michael M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-9262-5_37", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-9261-8", 
        "978-90-481-9262-5"
      ], 
      "name": "Advances in Robot Kinematics: Motion in Man and Machine", 
      "type": "Book"
    }, 
    "keywords": [
      "surrogate mechanism", 
      "optimization loop", 
      "degrees of freedom", 
      "elastic coupling", 
      "model parameters", 
      "relative motion", 
      "motion prediction", 
      "non-invasive measurement", 
      "magnetic resonance imaging (MRI) imaging", 
      "scanning tube", 
      "non-trivial combination", 
      "motion", 
      "measurements", 
      "parameters", 
      "simulations", 
      "rotation", 
      "tube", 
      "bone position", 
      "forearm motion", 
      "radius", 
      "MRI measurements", 
      "prediction", 
      "error", 
      "loop", 
      "work", 
      "fitting", 
      "method", 
      "coupling", 
      "components", 
      "position", 
      "freedom", 
      "earlier work", 
      "mechanism", 
      "results", 
      "axis", 
      "combination", 
      "values", 
      "bone", 
      "assumption", 
      "degree", 
      "anatomical components", 
      "good concordance", 
      "arm position", 
      "imaging", 
      "forearm rotation", 
      "MRI", 
      "translation", 
      "concordance", 
      "paper", 
      "spatial-loop surrogate mechanism", 
      "better forearm motion prediction", 
      "forearm motion prediction", 
      "resonance imaging (MRI) imaging", 
      "imaging (MRI) imaging", 
      "MRI scanning tube", 
      "coarse MRI", 
      "Elastokinematic Surrogate Mechanism"
    ], 
    "name": "Automated Fitting of an Elastokinematic Surrogate Mechanism for Forearm Motion from MRI Measurements", 
    "pagination": "349-358", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017820320"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-9262-5_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-9262-5_37", 
      "https://app.dimensions.ai/details/publication/pub.1017820320"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_194.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-90-481-9262-5_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9262-5_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9262-5_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9262-5_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9262-5_37'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      23 PREDICATES      84 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-9262-5_37 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:09
4 anzsrc-for:0903
5 schema:author Nf54b3e57108944f69bcc9b1230023da7
6 schema:datePublished 2010-05-04
7 schema:datePublishedReg 2010-05-04
8 schema:description Forearm rotation (pro-supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This paper regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) imaging is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and fitting the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation.
9 schema:editor N0e21a9f899fe43a89cd35556c63a34fd
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0c6c7e47df804405b00ba3aec8bd4046
14 schema:keywords Elastokinematic Surrogate Mechanism
15 MRI
16 MRI measurements
17 MRI scanning tube
18 anatomical components
19 arm position
20 assumption
21 axis
22 better forearm motion prediction
23 bone
24 bone position
25 coarse MRI
26 combination
27 components
28 concordance
29 coupling
30 degree
31 degrees of freedom
32 earlier work
33 elastic coupling
34 error
35 fitting
36 forearm motion
37 forearm motion prediction
38 forearm rotation
39 freedom
40 good concordance
41 imaging
42 imaging (MRI) imaging
43 loop
44 magnetic resonance imaging (MRI) imaging
45 measurements
46 mechanism
47 method
48 model parameters
49 motion
50 motion prediction
51 non-invasive measurement
52 non-trivial combination
53 optimization loop
54 paper
55 parameters
56 position
57 prediction
58 radius
59 relative motion
60 resonance imaging (MRI) imaging
61 results
62 rotation
63 scanning tube
64 simulations
65 spatial-loop surrogate mechanism
66 surrogate mechanism
67 translation
68 tube
69 values
70 work
71 schema:name Automated Fitting of an Elastokinematic Surrogate Mechanism for Forearm Motion from MRI Measurements
72 schema:pagination 349-358
73 schema:productId N0ad5caa1da3c4dbab7c34832c1dff5ff
74 Ne31cfff8898c47abbfd1d079e8fb9dac
75 schema:publisher N97aaa510096b4025a32fc2d3692afec9
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017820320
77 https://doi.org/10.1007/978-90-481-9262-5_37
78 schema:sdDatePublished 2021-11-01T18:49
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N41bd396f495245409dd8dd51139b8fba
81 schema:url https://doi.org/10.1007/978-90-481-9262-5_37
82 sgo:license sg:explorer/license/
83 sgo:sdDataset chapters
84 rdf:type schema:Chapter
85 N0ad5caa1da3c4dbab7c34832c1dff5ff schema:name doi
86 schema:value 10.1007/978-90-481-9262-5_37
87 rdf:type schema:PropertyValue
88 N0c6c7e47df804405b00ba3aec8bd4046 schema:isbn 978-90-481-9261-8
89 978-90-481-9262-5
90 schema:name Advances in Robot Kinematics: Motion in Man and Machine
91 rdf:type schema:Book
92 N0e21a9f899fe43a89cd35556c63a34fd rdf:first Ncefd5082b67b434791f9d447178c2ea4
93 rdf:rest Naad84f04de384d4faad24b661b1495d5
94 N20aef9100bbe4d13bba00590019511bb rdf:first sg:person.013651734266.13
95 rdf:rest rdf:nil
96 N41bd396f495245409dd8dd51139b8fba schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N464a47187141427f91463237eaf50e1a rdf:first sg:person.01230416560.94
99 rdf:rest Nbb9e340e47044468a018f1569baf0103
100 N97aaa510096b4025a32fc2d3692afec9 schema:name Springer Nature
101 rdf:type schema:Organisation
102 Na415908955b841509e6291c33615dcce schema:affiliation grid-institutes:grid.5718.b
103 schema:familyName Xu
104 schema:givenName J.
105 rdf:type schema:Person
106 Naad84f04de384d4faad24b661b1495d5 rdf:first Nc38bd32babe64d72be7902e8100f6e73
107 rdf:rest rdf:nil
108 Nbb9e340e47044468a018f1569baf0103 rdf:first sg:person.0670372065.98
109 rdf:rest N20aef9100bbe4d13bba00590019511bb
110 Nc38bd32babe64d72be7902e8100f6e73 schema:familyName Stanisic
111 schema:givenName Michael M.
112 rdf:type schema:Person
113 Ncefd5082b67b434791f9d447178c2ea4 schema:familyName Lenarcic
114 schema:givenName Jadran
115 rdf:type schema:Person
116 Ne31cfff8898c47abbfd1d079e8fb9dac schema:name dimensions_id
117 schema:value pub.1017820320
118 rdf:type schema:PropertyValue
119 Nf54b3e57108944f69bcc9b1230023da7 rdf:first Na415908955b841509e6291c33615dcce
120 rdf:rest N464a47187141427f91463237eaf50e1a
121 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
125 schema:name Other Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
131 schema:name Biomedical Engineering
132 rdf:type schema:DefinedTerm
133 sg:person.01230416560.94 schema:affiliation grid-institutes:grid.4488.0
134 schema:familyName Kasten
135 schema:givenName P.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230416560.94
137 rdf:type schema:Person
138 sg:person.013651734266.13 schema:affiliation grid-institutes:grid.5718.b
139 schema:familyName Kecskeméthy
140 schema:givenName A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013651734266.13
142 rdf:type schema:Person
143 sg:person.0670372065.98 schema:affiliation grid-institutes:grid.5110.5
144 schema:familyName Weinberg
145 schema:givenName A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670372065.98
147 rdf:type schema:Person
148 grid-institutes:grid.4488.0 schema:alternateName Department of Orthopaedic Surgery, University of Dresden, Dresden, Germany
149 schema:name Department of Orthopaedic Surgery, University of Dresden, Dresden, Germany
150 rdf:type schema:Organization
151 grid-institutes:grid.5110.5 schema:alternateName Department for Pediatric Surgery, University of Graz, Graz, Austria
152 schema:name Department for Pediatric Surgery, University of Graz, Graz, Austria
153 rdf:type schema:Organization
154 grid-institutes:grid.5718.b schema:alternateName Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany
155 schema:name Chair for Mechanics and Robotics, University of Duisburg-Essen, Duisburg-Essen, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...