Using Ancillary Data to Improve Prediction of Soil and Crop Attributes in Precision Agriculture View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-06-16

AUTHORS

P. Goovaerts , R. Kerry

ABSTRACT

This chapter describes three geostatistical methods to incorporate secondary information into the mapping of soil and crop attributes to improve the accuracy of their predictions. The application of the methods is illustrated in two case studies. Cokriging is the multivariate extension of the well known ordinary kriging. It does not require ancillary data to be available at all nodes of the interpolation grid, whereas kriging with external drift and simple kriging with local means do. Cokriging, however, is more demanding in terms of variogram inference and modelling. The other two methods use ancillary data to model the spatial trend of the primary variable. Kriging with an external drift can account for local changes in the linear correlation between primary and secondary variables. Simple kriging with local means, which applies kriging to regression residuals and adds the kriged residual to the regression estimate, is the most straightforward of these methods to implement. The prediction performance of each technique was evaluated by cross-validation. As the results are site-specific, the choice of technique for a given site should be guided by the results of cross-validation. More... »

PAGES

167-194

Book

TITLE

Geostatistical Applications for Precision Agriculture

ISBN

978-90-481-9132-1
978-90-481-9133-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-9133-8_7

DOI

http://dx.doi.org/10.1007/978-90-481-9133-8_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048759878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biomedware", 
          "id": "https://www.grid.ac/institutes/grid.281273.d", 
          "name": [
            "BioMedware Inc, 3526 W Liberty, Suite 100, 48104, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goovaerts", 
        "givenName": "P.", 
        "id": "sg:person.01043766424.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043766424.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biomedware", 
          "id": "https://www.grid.ac/institutes/grid.281273.d", 
          "name": [
            "BioMedware Inc, 3526 W Liberty, Suite 100, 48104, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kerry", 
        "givenName": "R.", 
        "id": "sg:person.014421606421.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421606421.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1475-2743.2006.00052.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007868213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-2743.2006.00052.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007868213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-005-1385-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013607471", 
          "https://doi.org/10.1007/s11119-005-1385-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11119-005-1385-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013607471", 
          "https://doi.org/10.1007/s11119-005-1385-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1537-5110(02)00283-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022056922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1537-5110(02)00283-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022056922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025080043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2005.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026955884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(98)00078-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032700640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021549107075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035473423", 
          "https://doi.org/10.1023/a:1021549107075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1992.tb00128.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036582751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036753273", 
          "https://doi.org/10.1007/978-3-662-03098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03098-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036753273", 
          "https://doi.org/10.1007/978-3-662-03098-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05294-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501398", 
          "https://doi.org/10.1007/978-3-662-05294-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05294-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045501398", 
          "https://doi.org/10.1007/978-3-662-05294-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(01)00074-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047647620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2008.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049415741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(00)00144-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053743199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.23122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064892791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2004.0285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2005.0251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068995427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/sssaj2001.653869x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069049422"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06-16", 
    "datePublishedReg": "2010-06-16", 
    "description": "This chapter describes three geostatistical methods to incorporate secondary information into the mapping of soil and crop attributes to improve the accuracy of their predictions. The application of the methods is illustrated in two case studies. Cokriging is the multivariate extension of the well known ordinary kriging. It does not require ancillary data to be available at all nodes of the interpolation grid, whereas kriging with external drift and simple kriging with local means do. Cokriging, however, is more demanding in terms of variogram inference and modelling. The other two methods use ancillary data to model the spatial trend of the primary variable. Kriging with an external drift can account for local changes in the linear correlation between primary and secondary variables. Simple kriging with local means, which applies kriging to regression residuals and adds the kriged residual to the regression estimate, is the most straightforward of these methods to implement. The prediction performance of each technique was evaluated by cross-validation. As the results are site-specific, the choice of technique for a given site should be guided by the results of cross-validation.", 
    "editor": [
      {
        "familyName": "Oliver", 
        "givenName": "M.A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-9133-8_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-9132-1", 
        "978-90-481-9133-8"
      ], 
      "name": "Geostatistical Applications for Precision Agriculture", 
      "type": "Book"
    }, 
    "name": "Using Ancillary Data to Improve Prediction of Soil and Crop Attributes in Precision Agriculture", 
    "pagination": "167-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048759878"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-9133-8_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8485d9debb8f973dff62e0abb4dadd8ce8339a0b5bc1167d02a65a5e076ee21"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-9133-8_7", 
      "https://app.dimensions.ai/details/publication/pub.1048759878"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118332_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-90-481-9133-8_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9133-8_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9133-8_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9133-8_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-9133-8_7'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      23 PREDICATES      43 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-9133-8_7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne2fea42dd34943f5a6459bd1607a364d
4 schema:citation sg:pub.10.1007/978-3-662-03098-1
5 sg:pub.10.1007/978-3-662-05294-5
6 sg:pub.10.1007/s11119-005-1385-9
7 sg:pub.10.1023/a:1021549107075
8 https://doi.org/10.1016/j.geoderma.2005.04.013
9 https://doi.org/10.1016/j.geoderma.2008.01.011
10 https://doi.org/10.1016/j.geoderma.2008.09.014
11 https://doi.org/10.1016/s0016-7061(01)00074-x
12 https://doi.org/10.1016/s0016-7061(98)00078-0
13 https://doi.org/10.1016/s0022-1694(00)00144-x
14 https://doi.org/10.1016/s1537-5110(02)00283-0
15 https://doi.org/10.1111/j.1365-2389.1992.tb00128.x
16 https://doi.org/10.1111/j.1475-2743.2006.00052.x
17 https://doi.org/10.13031/2013.23122
18 https://doi.org/10.2134/agronj2004.0285
19 https://doi.org/10.2134/agronj2005.0251
20 https://doi.org/10.2136/sssaj2001.653869x
21 schema:datePublished 2010-06-16
22 schema:datePublishedReg 2010-06-16
23 schema:description This chapter describes three geostatistical methods to incorporate secondary information into the mapping of soil and crop attributes to improve the accuracy of their predictions. The application of the methods is illustrated in two case studies. Cokriging is the multivariate extension of the well known ordinary kriging. It does not require ancillary data to be available at all nodes of the interpolation grid, whereas kriging with external drift and simple kriging with local means do. Cokriging, however, is more demanding in terms of variogram inference and modelling. The other two methods use ancillary data to model the spatial trend of the primary variable. Kriging with an external drift can account for local changes in the linear correlation between primary and secondary variables. Simple kriging with local means, which applies kriging to regression residuals and adds the kriged residual to the regression estimate, is the most straightforward of these methods to implement. The prediction performance of each technique was evaluated by cross-validation. As the results are site-specific, the choice of technique for a given site should be guided by the results of cross-validation.
24 schema:editor N616c39b865614d819a9fd58a216fd0cd
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nd90e449b57e4431f935b5ab17349c0ce
29 schema:name Using Ancillary Data to Improve Prediction of Soil and Crop Attributes in Precision Agriculture
30 schema:pagination 167-194
31 schema:productId Na6691f06352a4f0286855673ac56ef84
32 Nc97107989a6e493d9b2f8cad859fdace
33 Nf10b1176099f422b9951205687170cf4
34 schema:publisher Nb37a9944b0924b69a909f8d8a91f5eea
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048759878
36 https://doi.org/10.1007/978-90-481-9133-8_7
37 schema:sdDatePublished 2019-04-16T08:09
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N08eacdc9f87d41d1899ee2eaee0064e6
40 schema:url https://link.springer.com/10.1007%2F978-90-481-9133-8_7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N08eacdc9f87d41d1899ee2eaee0064e6 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N2f52dac2ef184ba5a31d73a987bd7b52 schema:familyName Oliver
47 schema:givenName M.A.
48 rdf:type schema:Person
49 N3bc4c86fa62c4ca1bbdc66415006d2e9 rdf:first sg:person.014421606421.19
50 rdf:rest rdf:nil
51 N616c39b865614d819a9fd58a216fd0cd rdf:first N2f52dac2ef184ba5a31d73a987bd7b52
52 rdf:rest rdf:nil
53 Na6691f06352a4f0286855673ac56ef84 schema:name dimensions_id
54 schema:value pub.1048759878
55 rdf:type schema:PropertyValue
56 Nb37a9944b0924b69a909f8d8a91f5eea schema:location Dordrecht
57 schema:name Springer Netherlands
58 rdf:type schema:Organisation
59 Nc97107989a6e493d9b2f8cad859fdace schema:name readcube_id
60 schema:value e8485d9debb8f973dff62e0abb4dadd8ce8339a0b5bc1167d02a65a5e076ee21
61 rdf:type schema:PropertyValue
62 Nd90e449b57e4431f935b5ab17349c0ce schema:isbn 978-90-481-9132-1
63 978-90-481-9133-8
64 schema:name Geostatistical Applications for Precision Agriculture
65 rdf:type schema:Book
66 Ne2fea42dd34943f5a6459bd1607a364d rdf:first sg:person.01043766424.63
67 rdf:rest N3bc4c86fa62c4ca1bbdc66415006d2e9
68 Nf10b1176099f422b9951205687170cf4 schema:name doi
69 schema:value 10.1007/978-90-481-9133-8_7
70 rdf:type schema:PropertyValue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:person.01043766424.63 schema:affiliation https://www.grid.ac/institutes/grid.281273.d
78 schema:familyName Goovaerts
79 schema:givenName P.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043766424.63
81 rdf:type schema:Person
82 sg:person.014421606421.19 schema:affiliation https://www.grid.ac/institutes/grid.281273.d
83 schema:familyName Kerry
84 schema:givenName R.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421606421.19
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-662-03098-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036753273
88 https://doi.org/10.1007/978-3-662-03098-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-662-05294-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045501398
91 https://doi.org/10.1007/978-3-662-05294-5
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11119-005-1385-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013607471
94 https://doi.org/10.1007/s11119-005-1385-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1023/a:1021549107075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035473423
97 https://doi.org/10.1023/a:1021549107075
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.geoderma.2005.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026955884
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.geoderma.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025080043
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.geoderma.2008.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049415741
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0016-7061(01)00074-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047647620
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0016-7061(98)00078-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032700640
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0022-1694(00)00144-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053743199
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s1537-5110(02)00283-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022056922
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/j.1365-2389.1992.tb00128.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036582751
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1111/j.1475-2743.2006.00052.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007868213
116 rdf:type schema:CreativeWork
117 https://doi.org/10.13031/2013.23122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064892791
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2134/agronj2004.0285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995050
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2134/agronj2005.0251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068995427
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2136/sssaj2001.653869x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069049422
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.281273.d schema:alternateName Biomedware
126 schema:name BioMedware Inc, 3526 W Liberty, Suite 100, 48104, Ann Arbor, MI, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...