Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

R. Moonjun , A. Farshad , D.P. Shrestha , C. Vaiphasa

ABSTRACT

The demand for high-resolution soil mapping is growing increasingly, in particular for the purpose of land degradation studies. The objective of this study focuses on applying the methods for digital predictive soil mapping in inaccessible, land degradation-prone areas. Artificial Neural Network (ANN) and Decision Tree (DT) were employed within the GIS environment to comply with the complexity of the soil forming factors governing the soil formation. Following the principles of the geopedologic approach to soil survey, a digital predictive soil mapping was carried out in Hoi Num Rin sub-watershed, covering an area about 20 km2. Both ANN and DT were applied to properly integrate the parameterized soil forming factors. To describe soil predictors to train the ANN and to formulate the decision trees, 4 organism types, 7 relief type units, 9 lithological units, 3 time series, 4 landscape units and 8 landform units were extracted from the map and databases. The results, the 10 soil class names were extrapolated to the unsampled areas to obtain the geopedologic map. In conclusion, the geopedologic approach to soil survey, which is based on understanding of landscape-soil relationship, is helpful to obtain spatial soil information in inaccessible areas, using ANN and/or DT are useful techniques in modeling the complex interactions among the soil forming factors. The difference, however, is that ANN, once it is well learnt, is faster, thus more recommendable in terms of time and cost saving. More... »

PAGES

151-164

Book

TITLE

Digital Soil Mapping

ISBN

978-90-481-8862-8
978-90-481-8863-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-8863-5_13

DOI

http://dx.doi.org/10.1007/978-90-481-8863-5_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043820124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
          "id": "https://www.grid.ac/institutes/grid.466856.f", 
          "name": [
            "International Institute of Geo-information Sciences and Earth Observation (ITC), Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moonjun", 
        "givenName": "R.", 
        "id": "sg:person.015147346137.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147346137.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
          "id": "https://www.grid.ac/institutes/grid.466856.f", 
          "name": [
            "International Institute of Geo-information Sciences and Earth Observation (ITC), Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farshad", 
        "givenName": "A.", 
        "id": "sg:person.011236476347.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236476347.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
          "id": "https://www.grid.ac/institutes/grid.466856.f", 
          "name": [
            "International Institute of Geo-information Sciences and Earth Observation (ITC), Enschede, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shrestha", 
        "givenName": "D.P.", 
        "id": "sg:person.012631437347.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631437347.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Chulalongkhorn University, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaiphasa", 
        "givenName": "C.", 
        "id": "sg:person.01273537651.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273537651.97"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0016-7061(97)00021-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(03)00223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(03)00223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007532420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1992.tb00129.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012471972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-7061(97)00017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029778003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-197704000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046601180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00010694-197704000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046601180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp366ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp366ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151977"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "The demand for high-resolution soil mapping is growing increasingly, in particular for the purpose of land degradation studies. The objective of this study focuses on applying the methods for digital predictive soil mapping in inaccessible, land degradation-prone areas. Artificial Neural Network (ANN) and Decision Tree (DT) were employed within the GIS environment to comply with the complexity of the soil forming factors governing the soil formation. Following the principles of the geopedologic approach to soil survey, a digital predictive soil mapping was carried out in Hoi Num Rin sub-watershed, covering an area about 20 km2. Both ANN and DT were applied to properly integrate the parameterized soil forming factors. To describe soil predictors to train the ANN and to formulate the decision trees, 4 organism types, 7 relief type units, 9 lithological units, 3 time series, 4 landscape units and 8 landform units were extracted from the map and databases. The results, the 10 soil class names were extrapolated to the unsampled areas to obtain the geopedologic map. In conclusion, the geopedologic approach to soil survey, which is based on understanding of landscape-soil relationship, is helpful to obtain spatial soil information in inaccessible areas, using ANN and/or DT are useful techniques in modeling the complex interactions among the soil forming factors. The difference, however, is that ANN, once it is well learnt, is faster, thus more recommendable in terms of time and cost saving.", 
    "editor": [
      {
        "familyName": "Boettinger", 
        "givenName": "Janis L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Howell", 
        "givenName": "David W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Moore", 
        "givenName": "Amanda C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hartemink", 
        "givenName": "Alfred E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kienast-Brown", 
        "givenName": "Suzann", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-8863-5_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-8862-8", 
        "978-90-481-8863-5"
      ], 
      "name": "Digital Soil Mapping", 
      "type": "Book"
    }, 
    "name": "Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand", 
    "pagination": "151-164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043820124"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-8863-5_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0bb9fd9f1ba696265cad84f2acbedbb1f5d8243a549cc7e4e21a4ab29fa7269"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-8863-5_13", 
      "https://app.dimensions.ai/details/publication/pub.1043820124"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29215_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-90-481-8863-5_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-8863-5_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-8863-5_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-8863-5_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-8863-5_13'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-8863-5_13 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N387c244a805c4b25a95f4b4ff1962040
4 schema:citation https://doi.org/10.1016/s0016-7061(03)00223-4
5 https://doi.org/10.1016/s0016-7061(97)00017-7
6 https://doi.org/10.1016/s0016-7061(97)00021-9
7 https://doi.org/10.1029/1999wr900315
8 https://doi.org/10.1097/00010694-197704000-00011
9 https://doi.org/10.1111/j.1365-2389.1992.tb00129.x
10 https://doi.org/10.1191/0309133303pp366ra
11 schema:datePublished 2010
12 schema:datePublishedReg 2010-01-01
13 schema:description The demand for high-resolution soil mapping is growing increasingly, in particular for the purpose of land degradation studies. The objective of this study focuses on applying the methods for digital predictive soil mapping in inaccessible, land degradation-prone areas. Artificial Neural Network (ANN) and Decision Tree (DT) were employed within the GIS environment to comply with the complexity of the soil forming factors governing the soil formation. Following the principles of the geopedologic approach to soil survey, a digital predictive soil mapping was carried out in Hoi Num Rin sub-watershed, covering an area about 20 km2. Both ANN and DT were applied to properly integrate the parameterized soil forming factors. To describe soil predictors to train the ANN and to formulate the decision trees, 4 organism types, 7 relief type units, 9 lithological units, 3 time series, 4 landscape units and 8 landform units were extracted from the map and databases. The results, the 10 soil class names were extrapolated to the unsampled areas to obtain the geopedologic map. In conclusion, the geopedologic approach to soil survey, which is based on understanding of landscape-soil relationship, is helpful to obtain spatial soil information in inaccessible areas, using ANN and/or DT are useful techniques in modeling the complex interactions among the soil forming factors. The difference, however, is that ANN, once it is well learnt, is faster, thus more recommendable in terms of time and cost saving.
14 schema:editor N381947dce46b4868941c7ec6524579bd
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N84936ffeec1744748a29694c80f15391
19 schema:name Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand
20 schema:pagination 151-164
21 schema:productId N00bf66afce1a4aefa6835f781af2fd9e
22 N17df8d73a03e4169bbba5a62f8b1dd37
23 Na099b4b0af9a4efab8f1206782b77992
24 schema:publisher N4c38b77a4d7f46109a52d1244b52a937
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043820124
26 https://doi.org/10.1007/978-90-481-8863-5_13
27 schema:sdDatePublished 2019-04-16T08:04
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb88a80f8d58e411ab37e5ba73236fd6d
30 schema:url https://link.springer.com/10.1007%2F978-90-481-8863-5_13
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N00bf66afce1a4aefa6835f781af2fd9e schema:name readcube_id
35 schema:value d0bb9fd9f1ba696265cad84f2acbedbb1f5d8243a549cc7e4e21a4ab29fa7269
36 rdf:type schema:PropertyValue
37 N11dcffa67e4a4ed8acf87595dcedba42 schema:familyName Moore
38 schema:givenName Amanda C.
39 rdf:type schema:Person
40 N17df8d73a03e4169bbba5a62f8b1dd37 schema:name dimensions_id
41 schema:value pub.1043820124
42 rdf:type schema:PropertyValue
43 N181a1e22cad24ea1831f96f3a3bd4db4 schema:name Chulalongkhorn University, Bangkok, Thailand
44 rdf:type schema:Organization
45 N34e11dc8076f49669e58a896a2068916 rdf:first N8e3c12018c8b4d6bbfe244d4bdb81e1b
46 rdf:rest N3f81808099e14e7cbacd3bd98b765599
47 N381947dce46b4868941c7ec6524579bd rdf:first Nfa649bdfdb0b4978b88b44e8e59140ce
48 rdf:rest N34e11dc8076f49669e58a896a2068916
49 N387c244a805c4b25a95f4b4ff1962040 rdf:first sg:person.015147346137.42
50 rdf:rest N3b6759e581554f6dbdec298d6fd7a8f7
51 N389aebfc696847e283ab1474b2f6d025 schema:familyName Hartemink
52 schema:givenName Alfred E.
53 rdf:type schema:Person
54 N3b6759e581554f6dbdec298d6fd7a8f7 rdf:first sg:person.011236476347.54
55 rdf:rest N66e29e39458446b49e7d2491f4b06013
56 N3f81808099e14e7cbacd3bd98b765599 rdf:first N11dcffa67e4a4ed8acf87595dcedba42
57 rdf:rest N6b889be9333742fe84c003bc95fd9d94
58 N4c38b77a4d7f46109a52d1244b52a937 schema:location Dordrecht
59 schema:name Springer Netherlands
60 rdf:type schema:Organisation
61 N66e29e39458446b49e7d2491f4b06013 rdf:first sg:person.012631437347.52
62 rdf:rest Nc9734b2bffde4766ac6c63a6aa3cf96b
63 N6b889be9333742fe84c003bc95fd9d94 rdf:first N389aebfc696847e283ab1474b2f6d025
64 rdf:rest Nab6e2e0a8b6a4b3c9b036f3c859e5072
65 N84936ffeec1744748a29694c80f15391 schema:isbn 978-90-481-8862-8
66 978-90-481-8863-5
67 schema:name Digital Soil Mapping
68 rdf:type schema:Book
69 N8e3c12018c8b4d6bbfe244d4bdb81e1b schema:familyName Howell
70 schema:givenName David W.
71 rdf:type schema:Person
72 Na099b4b0af9a4efab8f1206782b77992 schema:name doi
73 schema:value 10.1007/978-90-481-8863-5_13
74 rdf:type schema:PropertyValue
75 Nab6e2e0a8b6a4b3c9b036f3c859e5072 rdf:first Ndca5a2c1cbe145849e4f82012b3e052f
76 rdf:rest rdf:nil
77 Nb88a80f8d58e411ab37e5ba73236fd6d schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nc9734b2bffde4766ac6c63a6aa3cf96b rdf:first sg:person.01273537651.97
80 rdf:rest rdf:nil
81 Ndca5a2c1cbe145849e4f82012b3e052f schema:familyName Kienast-Brown
82 schema:givenName Suzann
83 rdf:type schema:Person
84 Nfa649bdfdb0b4978b88b44e8e59140ce schema:familyName Boettinger
85 schema:givenName Janis L.
86 rdf:type schema:Person
87 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
88 schema:name Environmental Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
91 schema:name Soil Sciences
92 rdf:type schema:DefinedTerm
93 sg:person.011236476347.54 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
94 schema:familyName Farshad
95 schema:givenName A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236476347.54
97 rdf:type schema:Person
98 sg:person.012631437347.52 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
99 schema:familyName Shrestha
100 schema:givenName D.P.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631437347.52
102 rdf:type schema:Person
103 sg:person.01273537651.97 schema:affiliation N181a1e22cad24ea1831f96f3a3bd4db4
104 schema:familyName Vaiphasa
105 schema:givenName C.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273537651.97
107 rdf:type schema:Person
108 sg:person.015147346137.42 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
109 schema:familyName Moonjun
110 schema:givenName R.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147346137.42
112 rdf:type schema:Person
113 https://doi.org/10.1016/s0016-7061(03)00223-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999004
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0016-7061(97)00017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029778003
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0016-7061(97)00021-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002900677
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1029/1999wr900315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007532420
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1097/00010694-197704000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046601180
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1111/j.1365-2389.1992.tb00129.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012471972
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1191/0309133303pp366ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064151977
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.466856.f schema:alternateName International Institute for Geo-Information Science and Earth Observation
128 schema:name International Institute of Geo-information Sciences and Earth Observation (ITC), Enschede, The Netherlands
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...