On the Interplay Between Real and Reciprocal Space Properties View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-11-03

AUTHORS

Wolfgang Scherer , Georg Eickerling , Christoph Hauf , Manuel Presnitz , Ernst-Wilhelm Scheidt , Volker Eyert , Rainer Pöttgen

ABSTRACT

The relationship between charge density distributions and physical properties in solids is highly complex and usually not obvious. It is therefore the aim of this Chapter to outline concepts how to explore and to analyze the interplay of real space properties (e.g. the charge density distribution or its Laplacian) and reciprocal space properties in solids (e.g. electronic conductivity, superconductivity) by means of charge density analyses. In our case study, we will focus on quasi-one dimensional organometallic carbides, which are textbook examples of extended systems displaying pronounced orbital interactions and anisotropic physical properties in real and reciprocal space. We therefore investigated the electronic structures of the complex carbides Sc3TC4 (T=Fe (1), Co (2), Ni (3)) by combined theoretical and experimental charge density studies. The structures of these organometallic carbides are closely related and display one-dimensional infinite TC4 ribbons embedded in a scandium matrix. Our study highlights that despite the structural similarities of 1–3 even tiny differences in the electronic band structure are faithfully recovered in the properties of the Laplacian of the electron density. In our case, the shift of the Fermi level to higher energies for the Co(d9) and Ni(d10) carbides 2 and 3 relative to the Fe(d8) analogue 1 is reflected in the charge density picture by a significant change in the polarization pattern displayed by the valence shell charge concentrations (VSCC) of the individual transition metal centers in the TC4 units. Hence, precise high-resolution X-ray diffraction data provide a reliable tool to discriminate and analyze the local electronic structures of isotypic solids even in the presence of a severe coloring problem (Z(Fe)/Z(Co)/Z(Ni)=26/27/28). We further demonstrate that the presence of an axial VSCC at the iron atom is due to localized dz2 states near the Fermi energy and reflected by a high electronic heat capacity at low temperatures (Sommerfeld coefficient γ=17mJ/K2mol in 1). On contrast, the lack of a narrow conduction band (and axial VSCCs at the transition metal) could be correlated in 2 and 3 with their smaller Sommerfeld coefficients (γ=5.7 and 7.7mJ/K2mol, respectively). Finally, we demonstrate that also the cobalt carbide 2 can be discriminated from its isotypic nickel congener 3 on the basis of its electronic properties. Indeed, only 2 is superconducting below 4.5K and displays a structural phase transition around 70K. Hence, this Chapter should help filling the gap between the various chemical and physical viewpoints on the interplay of chemical bonding and physical properties in solids. More... »

PAGES

359-385

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-3836-4_10

DOI

http://dx.doi.org/10.1007/978-90-481-3836-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009207920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scherer", 
        "givenName": "Wolfgang", 
        "id": "sg:person.0637202613.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637202613.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eickerling", 
        "givenName": "Georg", 
        "id": "sg:person.0615252600.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615252600.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauf", 
        "givenName": "Christoph", 
        "id": "sg:person.01071421767.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071421767.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Presnitz", 
        "givenName": "Manuel", 
        "id": "sg:person.01307337352.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307337352.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheidt", 
        "givenName": "Ernst-Wilhelm", 
        "id": "sg:person.0707733717.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707733717.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 1, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eyert", 
        "givenName": "Volker", 
        "id": "sg:person.0637210076.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637210076.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Anorganische und Analytische Chemie, Universit\u00e4t M\u00fcnster, Corrensstrasse 30, 48149, M\u00fcnster, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5949.1", 
          "name": [
            "Institut f\u00fcr Anorganische und Analytische Chemie, Universit\u00e4t M\u00fcnster, Corrensstrasse 30, 48149, M\u00fcnster, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00f6ttgen", 
        "givenName": "Rainer", 
        "id": "sg:person.012233057104.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233057104.69"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-11-03", 
    "datePublishedReg": "2011-11-03", 
    "description": "The relationship between charge density distributions and physical properties in solids is highly complex and usually not obvious. It is therefore the aim of this Chapter to outline concepts how to explore and to analyze the interplay of real space properties (e.g. the charge density distribution or its Laplacian) and reciprocal space properties in solids (e.g. electronic conductivity, superconductivity) by means of charge density analyses. In our case study, we will focus on quasi-one dimensional organometallic carbides, which are textbook examples of extended systems displaying pronounced orbital interactions and anisotropic physical properties in real and reciprocal space. We therefore investigated the electronic structures of the complex carbides Sc3TC4 (T=Fe (1), Co (2), Ni (3)) by combined theoretical and experimental charge density studies. The structures of these organometallic carbides are closely related and display one-dimensional infinite TC4 ribbons embedded in a scandium matrix. Our study highlights that despite the structural similarities of 1\u20133 even tiny differences in the electronic band structure are faithfully recovered in the properties of the Laplacian of the electron density. In our case, the shift of the Fermi level to higher energies for the Co(d9) and Ni(d10) carbides 2 and 3 relative to the Fe(d8) analogue 1 is reflected in the charge density picture by a significant change in the polarization pattern displayed by the valence shell charge concentrations (VSCC) of the individual transition metal centers in the TC4 units. Hence, precise high-resolution X-ray diffraction data provide a reliable tool to discriminate and analyze the local electronic structures of isotypic solids even in the presence of a severe coloring problem (Z(Fe)/Z(Co)/Z(Ni)=26/27/28). We further demonstrate that the presence of an axial VSCC at the iron atom is due to localized dz2 states near the Fermi energy and reflected by a high electronic heat capacity at low temperatures (Sommerfeld coefficient \u03b3=17mJ/K2mol in 1). On contrast, the lack of a narrow conduction band (and axial VSCCs at the transition metal) could be correlated in 2 and 3 with their smaller Sommerfeld coefficients (\u03b3=5.7 and 7.7mJ/K2mol, respectively). Finally, we demonstrate that also the cobalt carbide 2 can be discriminated from its isotypic nickel congener 3 on the basis of its electronic properties. Indeed, only 2 is superconducting below 4.5K and displays a structural phase transition around 70K. Hence, this Chapter should help filling the gap between the various chemical and physical viewpoints on the interplay of chemical bonding and physical properties in solids.", 
    "editor": [
      {
        "familyName": "Gatti", 
        "givenName": "Carlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Macchi", 
        "givenName": "Piero", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-3836-4_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-3835-7", 
        "978-90-481-3836-4"
      ], 
      "name": "Modern Charge-Density Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "physical properties", 
      "carbide", 
      "anisotropic physical properties", 
      "solids", 
      "carbide 2", 
      "charge concentration", 
      "heat capacity", 
      "density distribution", 
      "properties", 
      "space properties", 
      "electronic band structure", 
      "low temperatures", 
      "structural phase transition", 
      "charge density distribution", 
      "band structure", 
      "energy", 
      "electronic heat capacity", 
      "conduction band", 
      "physical viewpoint", 
      "chemical bonding", 
      "density analysis", 
      "structure", 
      "ribbons", 
      "tiny differences", 
      "Fermi level", 
      "high energy", 
      "temperature", 
      "narrow conduction band", 
      "electronic properties", 
      "phase transition", 
      "case study", 
      "electronic structure", 
      "scandium matrix", 
      "matrix", 
      "density", 
      "Fermi energy", 
      "coefficient", 
      "bonding", 
      "distribution", 
      "system", 
      "reciprocal space", 
      "electron density", 
      "polarization pattern", 
      "valence shell charge concentration", 
      "ray diffraction data", 
      "diffraction data", 
      "reliable tool", 
      "local electronic structure", 
      "capacity", 
      "Sommerfeld coefficient", 
      "chemicals", 
      "concept", 
      "means", 
      "study", 
      "example", 
      "extended system", 
      "density studies", 
      "concentration", 
      "units", 
      "tool", 
      "problem", 
      "band", 
      "transition", 
      "gap", 
      "viewpoint", 
      "chapter", 
      "interplay", 
      "charge density analysis", 
      "analysis", 
      "interaction", 
      "space", 
      "experimental charge density study", 
      "charge density study", 
      "transition metal centers", 
      "metal center", 
      "data", 
      "presence", 
      "iron atoms", 
      "state", 
      "basis", 
      "aim", 
      "real space properties", 
      "orbital interactions", 
      "cases", 
      "shift", 
      "analogues 1", 
      "significant changes", 
      "changes", 
      "patterns", 
      "center", 
      "atoms", 
      "dz2 states", 
      "small Sommerfeld coefficient", 
      "congeners 3", 
      "relationship", 
      "textbook example", 
      "structural similarity", 
      "differences", 
      "Laplacian", 
      "levels", 
      "picture", 
      "contrast", 
      "lack", 
      "similarity", 
      "Real", 
      "reciprocal space properties", 
      "coloring problem", 
      "dimensional organometallic carbides", 
      "organometallic carbides", 
      "complex carbides Sc3TC4", 
      "carbides Sc3TC4", 
      "Sc3TC4", 
      "one-dimensional infinite TC4 ribbons", 
      "infinite TC4 ribbons", 
      "TC4 ribbons", 
      "charge density picture", 
      "density picture", 
      "shell charge concentrations", 
      "individual transition metal centers", 
      "TC4 units", 
      "isotypic solids", 
      "severe coloring problem", 
      "axial VSCC", 
      "high electronic heat capacity", 
      "cobalt carbide 2", 
      "isotypic nickel congener 3", 
      "nickel congener 3"
    ], 
    "name": "On the Interplay Between Real and Reciprocal Space Properties", 
    "pagination": "359-385", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009207920"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-3836-4_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-3836-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1009207920"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_131.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-90-481-3836-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3836-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3836-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3836-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3836-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      23 PREDICATES      151 URIs      144 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-3836-4_10 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N9e9655baa8414abcaa2b2edd08dcce5d
4 schema:datePublished 2011-11-03
5 schema:datePublishedReg 2011-11-03
6 schema:description The relationship between charge density distributions and physical properties in solids is highly complex and usually not obvious. It is therefore the aim of this Chapter to outline concepts how to explore and to analyze the interplay of real space properties (e.g. the charge density distribution or its Laplacian) and reciprocal space properties in solids (e.g. electronic conductivity, superconductivity) by means of charge density analyses. In our case study, we will focus on quasi-one dimensional organometallic carbides, which are textbook examples of extended systems displaying pronounced orbital interactions and anisotropic physical properties in real and reciprocal space. We therefore investigated the electronic structures of the complex carbides Sc3TC4 (T=Fe (1), Co (2), Ni (3)) by combined theoretical and experimental charge density studies. The structures of these organometallic carbides are closely related and display one-dimensional infinite TC4 ribbons embedded in a scandium matrix. Our study highlights that despite the structural similarities of 1–3 even tiny differences in the electronic band structure are faithfully recovered in the properties of the Laplacian of the electron density. In our case, the shift of the Fermi level to higher energies for the Co(d9) and Ni(d10) carbides 2 and 3 relative to the Fe(d8) analogue 1 is reflected in the charge density picture by a significant change in the polarization pattern displayed by the valence shell charge concentrations (VSCC) of the individual transition metal centers in the TC4 units. Hence, precise high-resolution X-ray diffraction data provide a reliable tool to discriminate and analyze the local electronic structures of isotypic solids even in the presence of a severe coloring problem (Z(Fe)/Z(Co)/Z(Ni)=26/27/28). We further demonstrate that the presence of an axial VSCC at the iron atom is due to localized dz2 states near the Fermi energy and reflected by a high electronic heat capacity at low temperatures (Sommerfeld coefficient γ=17mJ/K2mol in 1). On contrast, the lack of a narrow conduction band (and axial VSCCs at the transition metal) could be correlated in 2 and 3 with their smaller Sommerfeld coefficients (γ=5.7 and 7.7mJ/K2mol, respectively). Finally, we demonstrate that also the cobalt carbide 2 can be discriminated from its isotypic nickel congener 3 on the basis of its electronic properties. Indeed, only 2 is superconducting below 4.5K and displays a structural phase transition around 70K. Hence, this Chapter should help filling the gap between the various chemical and physical viewpoints on the interplay of chemical bonding and physical properties in solids.
7 schema:editor Nff2cfcbfaf7b44838dd274f481a0e4fa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8d4976dc42364c40b454646680380c6a
12 schema:keywords Fermi energy
13 Fermi level
14 Laplacian
15 Real
16 Sc3TC4
17 Sommerfeld coefficient
18 TC4 ribbons
19 TC4 units
20 aim
21 analogues 1
22 analysis
23 anisotropic physical properties
24 atoms
25 axial VSCC
26 band
27 band structure
28 basis
29 bonding
30 capacity
31 carbide
32 carbide 2
33 carbides Sc3TC4
34 case study
35 cases
36 center
37 changes
38 chapter
39 charge concentration
40 charge density analysis
41 charge density distribution
42 charge density picture
43 charge density study
44 chemical bonding
45 chemicals
46 cobalt carbide 2
47 coefficient
48 coloring problem
49 complex carbides Sc3TC4
50 concentration
51 concept
52 conduction band
53 congeners 3
54 contrast
55 data
56 density
57 density analysis
58 density distribution
59 density picture
60 density studies
61 differences
62 diffraction data
63 dimensional organometallic carbides
64 distribution
65 dz2 states
66 electron density
67 electronic band structure
68 electronic heat capacity
69 electronic properties
70 electronic structure
71 energy
72 example
73 experimental charge density study
74 extended system
75 gap
76 heat capacity
77 high electronic heat capacity
78 high energy
79 individual transition metal centers
80 infinite TC4 ribbons
81 interaction
82 interplay
83 iron atoms
84 isotypic nickel congener 3
85 isotypic solids
86 lack
87 levels
88 local electronic structure
89 low temperatures
90 matrix
91 means
92 metal center
93 narrow conduction band
94 nickel congener 3
95 one-dimensional infinite TC4 ribbons
96 orbital interactions
97 organometallic carbides
98 patterns
99 phase transition
100 physical properties
101 physical viewpoint
102 picture
103 polarization pattern
104 presence
105 problem
106 properties
107 ray diffraction data
108 real space properties
109 reciprocal space
110 reciprocal space properties
111 relationship
112 reliable tool
113 ribbons
114 scandium matrix
115 severe coloring problem
116 shell charge concentrations
117 shift
118 significant changes
119 similarity
120 small Sommerfeld coefficient
121 solids
122 space
123 space properties
124 state
125 structural phase transition
126 structural similarity
127 structure
128 study
129 system
130 temperature
131 textbook example
132 tiny differences
133 tool
134 transition
135 transition metal centers
136 units
137 valence shell charge concentration
138 viewpoint
139 schema:name On the Interplay Between Real and Reciprocal Space Properties
140 schema:pagination 359-385
141 schema:productId N59b95e5c7ee543078061c3611967b667
142 Nc705491062c24000bf7c664272a6d199
143 schema:publisher Nf547b8f1859244b4ae1133c3cf655730
144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009207920
145 https://doi.org/10.1007/978-90-481-3836-4_10
146 schema:sdDatePublished 2021-11-01T18:47
147 schema:sdLicense https://scigraph.springernature.com/explorer/license/
148 schema:sdPublisher Nfaaf5e0b3223466cbdc70e566af7796c
149 schema:url https://doi.org/10.1007/978-90-481-3836-4_10
150 sgo:license sg:explorer/license/
151 sgo:sdDataset chapters
152 rdf:type schema:Chapter
153 N1d123ccb6d9643ca8e4a0f65098cecc7 rdf:first sg:person.012233057104.69
154 rdf:rest rdf:nil
155 N26127775e5a44d5ebea2f02185dfd846 rdf:first sg:person.01307337352.36
156 rdf:rest N9299dfcbdef947b690784a165545f077
157 N527df08b6d8b46b0941760dc096edcc9 rdf:first sg:person.0615252600.23
158 rdf:rest Ndcb43def651840aaa9cce50693b598a7
159 N59b95e5c7ee543078061c3611967b667 schema:name dimensions_id
160 schema:value pub.1009207920
161 rdf:type schema:PropertyValue
162 N6cb865b8ec754bb483ae774277d9ebb2 rdf:first Nf104d52979264142ac023a8970043ceb
163 rdf:rest rdf:nil
164 N75c17984c6544b16b056ce7a1402ed57 rdf:first sg:person.0637210076.58
165 rdf:rest N1d123ccb6d9643ca8e4a0f65098cecc7
166 N8d4976dc42364c40b454646680380c6a schema:isbn 978-90-481-3835-7
167 978-90-481-3836-4
168 schema:name Modern Charge-Density Analysis
169 rdf:type schema:Book
170 N9299dfcbdef947b690784a165545f077 rdf:first sg:person.0707733717.03
171 rdf:rest N75c17984c6544b16b056ce7a1402ed57
172 N9e9655baa8414abcaa2b2edd08dcce5d rdf:first sg:person.0637202613.18
173 rdf:rest N527df08b6d8b46b0941760dc096edcc9
174 Nc705491062c24000bf7c664272a6d199 schema:name doi
175 schema:value 10.1007/978-90-481-3836-4_10
176 rdf:type schema:PropertyValue
177 Nc9f43d191fdf4d008cc24bdfe98f87b8 schema:familyName Gatti
178 schema:givenName Carlo
179 rdf:type schema:Person
180 Ndcb43def651840aaa9cce50693b598a7 rdf:first sg:person.01071421767.80
181 rdf:rest N26127775e5a44d5ebea2f02185dfd846
182 Nf104d52979264142ac023a8970043ceb schema:familyName Macchi
183 schema:givenName Piero
184 rdf:type schema:Person
185 Nf547b8f1859244b4ae1133c3cf655730 schema:name Springer Nature
186 rdf:type schema:Organisation
187 Nfaaf5e0b3223466cbdc70e566af7796c schema:name Springer Nature - SN SciGraph project
188 rdf:type schema:Organization
189 Nff2cfcbfaf7b44838dd274f481a0e4fa rdf:first Nc9f43d191fdf4d008cc24bdfe98f87b8
190 rdf:rest N6cb865b8ec754bb483ae774277d9ebb2
191 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
192 schema:name Chemical Sciences
193 rdf:type schema:DefinedTerm
194 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
195 schema:name Inorganic Chemistry
196 rdf:type schema:DefinedTerm
197 sg:person.01071421767.80 schema:affiliation grid-institutes:grid.7307.3
198 schema:familyName Hauf
199 schema:givenName Christoph
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071421767.80
201 rdf:type schema:Person
202 sg:person.012233057104.69 schema:affiliation grid-institutes:grid.5949.1
203 schema:familyName Pöttgen
204 schema:givenName Rainer
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233057104.69
206 rdf:type schema:Person
207 sg:person.01307337352.36 schema:affiliation grid-institutes:grid.7307.3
208 schema:familyName Presnitz
209 schema:givenName Manuel
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307337352.36
211 rdf:type schema:Person
212 sg:person.0615252600.23 schema:affiliation grid-institutes:grid.7307.3
213 schema:familyName Eickerling
214 schema:givenName Georg
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615252600.23
216 rdf:type schema:Person
217 sg:person.0637202613.18 schema:affiliation grid-institutes:grid.7307.3
218 schema:familyName Scherer
219 schema:givenName Wolfgang
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637202613.18
221 rdf:type schema:Person
222 sg:person.0637210076.58 schema:affiliation grid-institutes:grid.7307.3
223 schema:familyName Eyert
224 schema:givenName Volker
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637210076.58
226 rdf:type schema:Person
227 sg:person.0707733717.03 schema:affiliation grid-institutes:grid.7307.3
228 schema:familyName Scheidt
229 schema:givenName Ernst-Wilhelm
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707733717.03
231 rdf:type schema:Person
232 grid-institutes:grid.5949.1 schema:alternateName Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
233 schema:name Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149, Münster, Germany
234 rdf:type schema:Organization
235 grid-institutes:grid.7307.3 schema:alternateName Institut für Physik, Universität Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany
236 schema:name Institut für Physik, Universität Augsburg, Universitätsstrasse 1, 86159, Augsburg, Germany
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...