Mathematical Realism And Transcendental Phenomenological Idealism View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010-01-05

AUTHORS

Richard Tieszen

ABSTRACT

In this paper I investigate the question whether mathematical realism is compatible with Husserl’s transcendental phenomenological idealism. The investigation leads to the conclusion that a unique kind of mathematical realism that I call “constituted realism” is compatible with and indeed entailed by transcendental phenomenological idealism. Constituted realism in mathematics is the view that the transcendental ego constitutes the meaning of being of mathematical objects in mathematical practice in a rationally motivated and non-arbitrary manner as abstract or ideal, non-causal, unchanging, non-spatial, and so on. The task is then to investigate which kinds of mathematical objects, e.g., natural numbers, real numbers, particular kinds of functions, transfinite sets, can be constituted in this manner. Various types of founded acts of consciousness are conditions for the possibility of this meaning constitution. More... »

PAGES

1-22

Book

TITLE

Phenomenology and Mathematics

ISBN

978-90-481-3728-2
978-90-481-3729-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-3729-9_1

DOI

http://dx.doi.org/10.1007/978-90-481-3729-9_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015942048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sao Paulo State University", 
          "id": "https://www.grid.ac/institutes/grid.410543.7", 
          "name": [
            "State University of S\u00e3o Paulo, Rio Claro, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tieszen", 
        "givenName": "Richard", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1874-5857(04)80018-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017221614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/philmat/nkj008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059974181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199272457.003.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088892304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511498589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098706383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511625398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098728201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109718239", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109718239", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-05", 
    "datePublishedReg": "2010-01-05", 
    "description": "In this paper I investigate the question whether mathematical realism is compatible with Husserl\u2019s transcendental phenomenological idealism. The investigation leads to the conclusion that a unique kind of mathematical realism that I call \u201cconstituted realism\u201d is compatible with and indeed entailed by transcendental phenomenological idealism. Constituted realism in mathematics is the view that the transcendental ego constitutes the meaning of being of mathematical objects in mathematical practice in a rationally motivated and non-arbitrary manner as abstract or ideal, non-causal, unchanging, non-spatial, and so on. The task is then to investigate which kinds of mathematical objects, e.g., natural numbers, real numbers, particular kinds of functions, transfinite sets, can be constituted in this manner. Various types of founded acts of consciousness are conditions for the possibility of this meaning constitution.", 
    "editor": [
      {
        "familyName": "Hartimo", 
        "givenName": "Mirja", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-3729-9_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-3728-2", 
        "978-90-481-3729-9"
      ], 
      "name": "Phenomenology and Mathematics", 
      "type": "Book"
    }, 
    "name": "Mathematical Realism And Transcendental Phenomenological Idealism", 
    "pagination": "1-22", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015942048"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-3729-9_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bf6208eeea24611fda2bc189312120eca3a8b726639a3307f76314aa5b04bc3"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-3729-9_1", 
      "https://app.dimensions.ai/details/publication/pub.1015942048"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57880_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-90-481-3729-9_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3729-9_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3729-9_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3729-9_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3729-9_1'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      23 PREDICATES      32 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-3729-9_1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb50451a3c6c64ba28492629af3f72f2d
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109718239
5 https://doi.org/10.1016/s1874-5857(04)80018-9
6 https://doi.org/10.1017/cbo9780511498589
7 https://doi.org/10.1017/cbo9780511625398
8 https://doi.org/10.1093/acprof:oso/9780199272457.003.0009
9 https://doi.org/10.1093/philmat/nkj008
10 schema:datePublished 2010-01-05
11 schema:datePublishedReg 2010-01-05
12 schema:description In this paper I investigate the question whether mathematical realism is compatible with Husserl’s transcendental phenomenological idealism. The investigation leads to the conclusion that a unique kind of mathematical realism that I call “constituted realism” is compatible with and indeed entailed by transcendental phenomenological idealism. Constituted realism in mathematics is the view that the transcendental ego constitutes the meaning of being of mathematical objects in mathematical practice in a rationally motivated and non-arbitrary manner as abstract or ideal, non-causal, unchanging, non-spatial, and so on. The task is then to investigate which kinds of mathematical objects, e.g., natural numbers, real numbers, particular kinds of functions, transfinite sets, can be constituted in this manner. Various types of founded acts of consciousness are conditions for the possibility of this meaning constitution.
13 schema:editor N781a300f85684eb4918c7bbeaa6b7a03
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N201a0812d0b24935aae6dc689ab271d8
18 schema:name Mathematical Realism And Transcendental Phenomenological Idealism
19 schema:pagination 1-22
20 schema:productId N150b2d426a004f51acea82741e3c38e8
21 N5169be8475e44f1fa21aadb9304ff8cf
22 Na3b5f7a9af0f41ddbfd3ed6c53bb1de4
23 schema:publisher N5b3ff28957a64f9dafa49c515bd2f662
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015942048
25 https://doi.org/10.1007/978-90-481-3729-9_1
26 schema:sdDatePublished 2019-04-16T07:30
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N9122d6ad48824f04bfb4e2292be4cf5b
29 schema:url https://link.springer.com/10.1007%2F978-90-481-3729-9_1
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N11bee6d060614145a92af39dc1642321 schema:affiliation https://www.grid.ac/institutes/grid.410543.7
34 schema:familyName Tieszen
35 schema:givenName Richard
36 rdf:type schema:Person
37 N150b2d426a004f51acea82741e3c38e8 schema:name doi
38 schema:value 10.1007/978-90-481-3729-9_1
39 rdf:type schema:PropertyValue
40 N201a0812d0b24935aae6dc689ab271d8 schema:isbn 978-90-481-3728-2
41 978-90-481-3729-9
42 schema:name Phenomenology and Mathematics
43 rdf:type schema:Book
44 N5169be8475e44f1fa21aadb9304ff8cf schema:name dimensions_id
45 schema:value pub.1015942048
46 rdf:type schema:PropertyValue
47 N5b3ff28957a64f9dafa49c515bd2f662 schema:location Dordrecht
48 schema:name Springer Netherlands
49 rdf:type schema:Organisation
50 N6a923fa2399f4b698632ee8a3d08a2b9 schema:familyName Hartimo
51 schema:givenName Mirja
52 rdf:type schema:Person
53 N781a300f85684eb4918c7bbeaa6b7a03 rdf:first N6a923fa2399f4b698632ee8a3d08a2b9
54 rdf:rest rdf:nil
55 N9122d6ad48824f04bfb4e2292be4cf5b schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Na3b5f7a9af0f41ddbfd3ed6c53bb1de4 schema:name readcube_id
58 schema:value 4bf6208eeea24611fda2bc189312120eca3a8b726639a3307f76314aa5b04bc3
59 rdf:type schema:PropertyValue
60 Nb50451a3c6c64ba28492629af3f72f2d rdf:first N11bee6d060614145a92af39dc1642321
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 https://app.dimensions.ai/details/publication/pub.1109718239 schema:CreativeWork
69 https://doi.org/10.1016/s1874-5857(04)80018-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017221614
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1017/cbo9780511498589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098706383
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1017/cbo9780511625398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098728201
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1093/acprof:oso/9780199272457.003.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088892304
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1093/philmat/nkj008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059974181
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.410543.7 schema:alternateName Sao Paulo State University
80 schema:name State University of São Paulo, Rio Claro, Brazil
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...