Multi-agent Coordination for Market Environments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-11-21

AUTHORS

R. Duan , G. Deconinck

ABSTRACT

The financial crisis has deflated oil prices, prolonging the attractiveness of fossil fuel combustion as a method of energy generation. However, mankind faces a future of a hot, flat, and crowded world [2], making a critical transformation away from the use of fossil fuels imperative. After years of research and experimentation, a number of Renewable Energy Sources (RES) have become technically available as alternatives. Yet a pivotal task which still needs to be carried out is that of adapting the existing electricity infrastructure – still a very efficient energy delivery facility – to allow it to incorporate emerging RES openly and equally. To stimulate the widespread adoption of RES, which would result in the evolution to next generation infrastructures for electricity, incentives should include economic and political measures rather than only technology. In this chapter we summarize the properties of different RES and introduce the ‘microgrid’, a grid architecture allowing high RES penetration. We also analyze the prevailing electricity market structure and describe existing economic incentives for RES accommodation. Most importantly, we elaborate on the multi-agent model of electricity infrastructures based on the microgrid and its coordination mechanism within the market environment. More... »

PAGES

151-177

Book

TITLE

Intelligent Infrastructures

ISBN

978-90-481-3597-4
978-90-481-3598-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-3598-1_7

DOI

http://dx.doi.org/10.1007/978-90-481-3598-1_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047145343


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Department of Electrical Engineering, ELECTA, Katholieke Universiteit, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "R.", 
        "id": "sg:person.015662577601.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662577601.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Department of Electrical Engineering, ELECTA, Katholieke Universiteit, Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deconinck", 
        "givenName": "G.", 
        "id": "sg:person.01022745130.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022745130.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1082473.1082807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029432948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pesc.2004.1354758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093582023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fps.2005.204225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093929441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fps.2005.204287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095494033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11-21", 
    "datePublishedReg": "2009-11-21", 
    "description": "The financial crisis has deflated oil prices, prolonging the attractiveness of fossil fuel combustion as a method of energy generation. However, mankind faces a future of a hot, flat, and crowded world [2], making a critical transformation away from the use of fossil fuels imperative. After years of research and experimentation, a number of Renewable Energy Sources (RES) have become technically available as alternatives. Yet a pivotal task which still needs to be carried out is that of adapting the existing electricity infrastructure \u2013 still a very efficient energy delivery facility \u2013 to allow it to incorporate emerging RES openly and equally. To stimulate the widespread adoption of RES, which would result in the evolution to next generation infrastructures for electricity, incentives should include economic and political measures rather than only technology. In this chapter we summarize the properties of different RES and introduce the \u2018microgrid\u2019, a grid architecture allowing high RES penetration. We also analyze the prevailing electricity market structure and describe existing economic incentives for RES accommodation. Most importantly, we elaborate on the multi-agent model of electricity infrastructures based on the microgrid and its coordination mechanism within the market environment.", 
    "editor": [
      {
        "familyName": "Negenborn", 
        "givenName": "Rudy R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lukszo", 
        "givenName": "Zofia", 
        "type": "Person"
      }, 
      {
        "familyName": "Hellendoorn", 
        "givenName": "Hans", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-3598-1_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-3597-4", 
        "978-90-481-3598-1"
      ], 
      "name": "Intelligent Infrastructures", 
      "type": "Book"
    }, 
    "name": "Multi-agent Coordination for Market Environments", 
    "pagination": "151-177", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047145343"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-3598-1_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e095beb28d6fc3856627036785521cdf9e32826f4e26a9d9697350dd9abefe41"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-3598-1_7", 
      "https://app.dimensions.ai/details/publication/pub.1047145343"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_52988_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-90-481-3598-1_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3598-1_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3598-1_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3598-1_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3598-1_7'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      23 PREDICATES      30 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-3598-1_7 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N4ae4f444faf84e5ebe2a4791f685079a
4 schema:citation https://doi.org/10.1109/fps.2005.204225
5 https://doi.org/10.1109/fps.2005.204287
6 https://doi.org/10.1109/pesc.2004.1354758
7 https://doi.org/10.1145/1082473.1082807
8 schema:datePublished 2009-11-21
9 schema:datePublishedReg 2009-11-21
10 schema:description The financial crisis has deflated oil prices, prolonging the attractiveness of fossil fuel combustion as a method of energy generation. However, mankind faces a future of a hot, flat, and crowded world [2], making a critical transformation away from the use of fossil fuels imperative. After years of research and experimentation, a number of Renewable Energy Sources (RES) have become technically available as alternatives. Yet a pivotal task which still needs to be carried out is that of adapting the existing electricity infrastructure – still a very efficient energy delivery facility – to allow it to incorporate emerging RES openly and equally. To stimulate the widespread adoption of RES, which would result in the evolution to next generation infrastructures for electricity, incentives should include economic and political measures rather than only technology. In this chapter we summarize the properties of different RES and introduce the ‘microgrid’, a grid architecture allowing high RES penetration. We also analyze the prevailing electricity market structure and describe existing economic incentives for RES accommodation. Most importantly, we elaborate on the multi-agent model of electricity infrastructures based on the microgrid and its coordination mechanism within the market environment.
11 schema:editor N55838cf1df904abaad8b9261f20a02c0
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N68be71f5520945e9b3d2917fb34b8dd2
16 schema:name Multi-agent Coordination for Market Environments
17 schema:pagination 151-177
18 schema:productId N0c66bcdfe5234c17b036a112b34f4801
19 N44f7f0e2502d43a0b60aef146cb58a39
20 N93087b409c514253b2b1f56818df2882
21 schema:publisher N376d342fdb374990a806768cf6d3260d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047145343
23 https://doi.org/10.1007/978-90-481-3598-1_7
24 schema:sdDatePublished 2019-04-16T07:26
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nbce4a07c2a544399bab763c7342f7761
27 schema:url https://link.springer.com/10.1007%2F978-90-481-3598-1_7
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0c66bcdfe5234c17b036a112b34f4801 schema:name dimensions_id
32 schema:value pub.1047145343
33 rdf:type schema:PropertyValue
34 N376d342fdb374990a806768cf6d3260d schema:location Dordrecht
35 schema:name Springer Netherlands
36 rdf:type schema:Organisation
37 N44f7f0e2502d43a0b60aef146cb58a39 schema:name readcube_id
38 schema:value e095beb28d6fc3856627036785521cdf9e32826f4e26a9d9697350dd9abefe41
39 rdf:type schema:PropertyValue
40 N4ae4f444faf84e5ebe2a4791f685079a rdf:first sg:person.015662577601.37
41 rdf:rest Nfb7982e6b16a48638a9450cb66ecf95c
42 N52320170c1584ef4a1054d9f13bc5f10 schema:familyName Hellendoorn
43 schema:givenName Hans
44 rdf:type schema:Person
45 N55838cf1df904abaad8b9261f20a02c0 rdf:first Na72e8b7891ab474d98a473fc1f41ff7a
46 rdf:rest N96b474813d824d159f923778ed843b36
47 N68be71f5520945e9b3d2917fb34b8dd2 schema:isbn 978-90-481-3597-4
48 978-90-481-3598-1
49 schema:name Intelligent Infrastructures
50 rdf:type schema:Book
51 N77942c9138fc4beeb4cffc5b2cd9da90 rdf:first N52320170c1584ef4a1054d9f13bc5f10
52 rdf:rest rdf:nil
53 N93087b409c514253b2b1f56818df2882 schema:name doi
54 schema:value 10.1007/978-90-481-3598-1_7
55 rdf:type schema:PropertyValue
56 N96b474813d824d159f923778ed843b36 rdf:first Nb70cd470ef7344cc8fbda5e0ad923bad
57 rdf:rest N77942c9138fc4beeb4cffc5b2cd9da90
58 Na72e8b7891ab474d98a473fc1f41ff7a schema:familyName Negenborn
59 schema:givenName Rudy R.
60 rdf:type schema:Person
61 Nb70cd470ef7344cc8fbda5e0ad923bad schema:familyName Lukszo
62 schema:givenName Zofia
63 rdf:type schema:Person
64 Nbce4a07c2a544399bab763c7342f7761 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nfb7982e6b16a48638a9450cb66ecf95c rdf:first sg:person.01022745130.75
67 rdf:rest rdf:nil
68 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
69 schema:name Economics
70 rdf:type schema:DefinedTerm
71 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
72 schema:name Applied Economics
73 rdf:type schema:DefinedTerm
74 sg:person.01022745130.75 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
75 schema:familyName Deconinck
76 schema:givenName G.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022745130.75
78 rdf:type schema:Person
79 sg:person.015662577601.37 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
80 schema:familyName Duan
81 schema:givenName R.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662577601.37
83 rdf:type schema:Person
84 https://doi.org/10.1109/fps.2005.204225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093929441
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/fps.2005.204287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095494033
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/pesc.2004.1354758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093582023
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1145/1082473.1082807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029432948
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
93 schema:name Department of Electrical Engineering, ELECTA, Katholieke Universiteit, Leuven, Belgium
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...