Source-Follower-Based Continuous Time Analog Filters View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-10-21

AUTHORS

Stefano D’Amico , Marcello De Matteis , Andrea Baschirotto

ABSTRACT

Continuous-time (CT) analog filters based on source-follower circuits and on a local positive feedback to synthesize negative resistances and complex poles are here proposed. The intrinsic source-follower feedback allows these filters to perform large linearity for smaller VOV( = VGS − VTH). This is exactly the opposite of the other CT filters where linearity performance improves with VOV and with the current consumption increasing. Two circuit implementations will be shown. The first filter uses a cascade topologies to synthesize a fourth-order lowpass filter. In a 0. 18 μm CMOS at 1.8-V supply, it achieves a 17.5 dBm IIP3 and a − 40 dB HD3 for a 600-mVpp–diff input signal amplitude. A 24 μVrms noise gives a DR = 79 dB, with 2.25 mA current consumption. The second filter exploits a ladder topology to synthesize a sixth order low-pass filter frequency response. In a 0. 13 μm CMOS technology with VDD = 1. 2 V, the cut-off frequency is 280 MHz while the DC gain is 0 dB. An 11 dBm IIP3 has been measured. The output noise is about − 140 dBm at 3 MHz. More... »

PAGES

167-187

Book

TITLE

Analog Circuit Design

ISBN

978-90-481-3082-5
978-90-481-3083-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-3083-2_9

DOI

http://dx.doi.org/10.1007/978-90-481-3083-2_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008571084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Innovation Engineering, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Amico", 
        "givenName": "Stefano", 
        "id": "sg:person.016326256423.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326256423.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Department of Innovation Engineering, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Matteis", 
        "givenName": "Marcello", 
        "id": "sg:person.07545340725.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545340725.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milano-Bicocca", 
          "id": "https://www.grid.ac/institutes/grid.7563.7", 
          "name": [
            "Department of Physics \u201cG. Occhialini\u201d, University of Milano Bicocca, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baschirotto", 
        "givenName": "Andrea", 
        "id": "sg:person.015047544023.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047544023.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/4.933461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061167702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2002.807402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061328435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2003.817595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061328625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isscc.2007.373544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094569459"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10-21", 
    "datePublishedReg": "2009-10-21", 
    "description": "Continuous-time (CT) analog filters based on source-follower circuits and on a local positive feedback to synthesize negative resistances and complex poles are here proposed. The intrinsic source-follower feedback allows these filters to perform large linearity for smaller VOV( = VGS \u2212 VTH). This is exactly the opposite of the other CT filters where linearity performance improves with VOV and with the current consumption increasing. Two circuit implementations will be shown. The first filter uses a cascade topologies to synthesize a fourth-order lowpass filter. In a 0. 18 \u03bcm CMOS at 1.8-V supply, it achieves a 17.5 dBm IIP3 and a \u2212 40 dB HD3 for a 600-mVpp\u2013diff input signal amplitude. A 24 \u03bcVrms noise gives a DR = 79 dB, with 2.25 mA current consumption. The second filter exploits a ladder topology to synthesize a sixth order low-pass filter frequency response. In a 0. 13 \u03bcm CMOS technology with VDD = 1. 2 V, the cut-off frequency is 280 MHz while the DC gain is 0 dB. An 11 dBm IIP3 has been measured. The output noise is about \u2212 140 dBm at 3 MHz.", 
    "editor": [
      {
        "familyName": "Roermund", 
        "givenName": "Arthur H. M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Casier", 
        "givenName": "Herman", 
        "type": "Person"
      }, 
      {
        "familyName": "Steyaert", 
        "givenName": "Michiel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-3083-2_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-3082-5", 
        "978-90-481-3083-2"
      ], 
      "name": "Analog Circuit Design", 
      "type": "Book"
    }, 
    "name": "Source-Follower-Based Continuous Time Analog Filters", 
    "pagination": "167-187", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008571084"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-3083-2_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28d5a741efafc83c372637468c33cc1372508b1bfec2ec661673dbe4f726aea1"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Springer Netherlands", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-3083-2_9", 
      "https://app.dimensions.ai/details/publication/pub.1008571084"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53019_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-90-481-3083-2_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3083-2_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3083-2_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3083-2_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-3083-2_9'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      30 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-3083-2_9 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N57927bf4f34348a38c7de3758bb2f7eb
4 schema:citation https://doi.org/10.1109/4.933461
5 https://doi.org/10.1109/isscc.2007.373544
6 https://doi.org/10.1109/jssc.2002.807402
7 https://doi.org/10.1109/jssc.2003.817595
8 schema:datePublished 2009-10-21
9 schema:datePublishedReg 2009-10-21
10 schema:description Continuous-time (CT) analog filters based on source-follower circuits and on a local positive feedback to synthesize negative resistances and complex poles are here proposed. The intrinsic source-follower feedback allows these filters to perform large linearity for smaller VOV( = VGS − VTH). This is exactly the opposite of the other CT filters where linearity performance improves with VOV and with the current consumption increasing. Two circuit implementations will be shown. The first filter uses a cascade topologies to synthesize a fourth-order lowpass filter. In a 0. 18 μm CMOS at 1.8-V supply, it achieves a 17.5 dBm IIP3 and a − 40 dB HD3 for a 600-mVpp–diff input signal amplitude. A 24 μVrms noise gives a DR = 79 dB, with 2.25 mA current consumption. The second filter exploits a ladder topology to synthesize a sixth order low-pass filter frequency response. In a 0. 13 μm CMOS technology with VDD = 1. 2 V, the cut-off frequency is 280 MHz while the DC gain is 0 dB. An 11 dBm IIP3 has been measured. The output noise is about − 140 dBm at 3 MHz.
11 schema:editor N4dd3e57d46d74fcea4fb7557fea85b50
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N5c9ff0600ec3456cb08ea0ef0e0c7b0f
16 schema:name Source-Follower-Based Continuous Time Analog Filters
17 schema:pagination 167-187
18 schema:productId N35434f3aa5204ed7917ed7d3baaccd9a
19 N6ea25b7db62e4a08a2ad5971ca53cd3b
20 N6ebbcfd3197d4a0cbbddab6823485edd
21 schema:publisher N446d95409207458095d716060816dcac
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008571084
23 https://doi.org/10.1007/978-90-481-3083-2_9
24 schema:sdDatePublished 2019-04-16T07:27
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nde8603a05646401e859bc813d0cdd546
27 schema:url https://link.springer.com/10.1007%2F978-90-481-3083-2_9
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N266ac432ce494a03afbf90230138cbe8 rdf:first N2c94c16e4f334bc4ac36ef3ed1f9297c
32 rdf:rest N8f277be566ae448a99a2ee55520d9d29
33 N278d4a30c71741ecac446caba029b4d9 schema:familyName Steyaert
34 schema:givenName Michiel
35 rdf:type schema:Person
36 N2c94c16e4f334bc4ac36ef3ed1f9297c schema:familyName Casier
37 schema:givenName Herman
38 rdf:type schema:Person
39 N35434f3aa5204ed7917ed7d3baaccd9a schema:name readcube_id
40 schema:value 28d5a741efafc83c372637468c33cc1372508b1bfec2ec661673dbe4f726aea1
41 rdf:type schema:PropertyValue
42 N446d95409207458095d716060816dcac schema:location Dordrecht
43 schema:name Springer Netherlands
44 rdf:type schema:Organisation
45 N4dd3e57d46d74fcea4fb7557fea85b50 rdf:first N7f1669d0466f40dc8fd0cd06a31930b9
46 rdf:rest N266ac432ce494a03afbf90230138cbe8
47 N5666e1a15392437bb83c63528acc420f rdf:first sg:person.015047544023.34
48 rdf:rest rdf:nil
49 N57927bf4f34348a38c7de3758bb2f7eb rdf:first sg:person.016326256423.60
50 rdf:rest N8f6029bacb1f4695b65aee7cc7c4317b
51 N5c9ff0600ec3456cb08ea0ef0e0c7b0f schema:isbn 978-90-481-3082-5
52 978-90-481-3083-2
53 schema:name Analog Circuit Design
54 rdf:type schema:Book
55 N6ea25b7db62e4a08a2ad5971ca53cd3b schema:name dimensions_id
56 schema:value pub.1008571084
57 rdf:type schema:PropertyValue
58 N6ebbcfd3197d4a0cbbddab6823485edd schema:name doi
59 schema:value 10.1007/978-90-481-3083-2_9
60 rdf:type schema:PropertyValue
61 N7f1669d0466f40dc8fd0cd06a31930b9 schema:familyName Roermund
62 schema:givenName Arthur H. M.
63 rdf:type schema:Person
64 N8f277be566ae448a99a2ee55520d9d29 rdf:first N278d4a30c71741ecac446caba029b4d9
65 rdf:rest rdf:nil
66 N8f6029bacb1f4695b65aee7cc7c4317b rdf:first sg:person.07545340725.02
67 rdf:rest N5666e1a15392437bb83c63528acc420f
68 Nde8603a05646401e859bc813d0cdd546 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
71 schema:name Technology
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
74 schema:name Communications Technologies
75 rdf:type schema:DefinedTerm
76 sg:person.015047544023.34 schema:affiliation https://www.grid.ac/institutes/grid.7563.7
77 schema:familyName Baschirotto
78 schema:givenName Andrea
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015047544023.34
80 rdf:type schema:Person
81 sg:person.016326256423.60 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
82 schema:familyName D’Amico
83 schema:givenName Stefano
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016326256423.60
85 rdf:type schema:Person
86 sg:person.07545340725.02 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
87 schema:familyName De Matteis
88 schema:givenName Marcello
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07545340725.02
90 rdf:type schema:Person
91 https://doi.org/10.1109/4.933461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061167702
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/isscc.2007.373544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094569459
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/jssc.2002.807402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061328435
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/jssc.2003.817595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061328625
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.7563.7 schema:alternateName University of Milano-Bicocca
100 schema:name Department of Physics “G. Occhialini”, University of Milano Bicocca, Milano, Italy
101 rdf:type schema:Organization
102 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
103 schema:name Department of Innovation Engineering, University of Salento, Lecce, Italy
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...