Ontology type: schema:Chapter
2009
AUTHORSAlexander V. Glushkov , Olga Yu. Khetselius , Ludmila Lovett
ABSTRACTWe discuss the cooperative electron β-nuclear processes in atoms and molecules, including the excitation, ionization, electronic rearrangement, induced by the nuclear reactions and β-decay. The relativistic many-body perturbation theory (PT) with the optimized Dirac–Kohn–Sham (DKS) zeroth approximation is used to calculate the β-decay parameters for a number of allowed (superallowed) transitions (33P–33S, 241Pu–241Am, etc.) and study a chemical bond effect on β-decay parameters. A few factors are taken into account: changing the integration limits in the Fermi function integral, energy corrections for different chemical substances and the possibility of the bound β-decay or other decay channels. We studied the electronic rearrangement induced by nuclear transmutation in the β-decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{\rm{2}}^{\rm{6}} {\rm{He}}_{\rm{4}} \to ({}_3^6 {\rm{Li}}_{\rm{3}}^{\rm{ + }} )^* + e^ - + \bar \nu _e $\end{document}. The half-life period T1 / 2 for β-decay of tritium atom (ion) has been estimated while taking into account the bound β-decay channel and some other accompanying effects. The estimated values of T1 / 2 for the tritium β-decay and free triton decay are (T1 / 2)a=12.26 years (correction due to the electron-atomic effects (Δ T1 / 2/T1 / 2)a=0.82%) for the tritium atom and (T1 / 2)t=12.36 years for the triton decay. These data are in physically reasonable agreement with experimental data. We first present the value T1 / 2 in a case of the β-decay in the halogen-containing molecular tritium (3HCl): (T1 / 2)m=12.28 years (3HCl) and the correction due to the chemical bond effect is (Δ T1 / 2)am=0.024 (i.e. 0.20%). More... »
PAGES125-152
Advances in the Theory of Atomic and Molecular Systems
ISBN
978-90-481-2984-3
978-90-481-2985-0
http://scigraph.springernature.com/pub.10.1007/978-90-481-2985-0_7
DOIhttp://dx.doi.org/10.1007/978-90-481-2985-0_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002770820
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, 142090, Troitsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Odessa University, 65009, Odessa-9, Ukraine",
"Russian Academy of Sciences, 142090, Troitsk, Russia"
],
"type": "Organization"
},
"familyName": "Glushkov",
"givenName": "Alexander V.",
"id": "sg:person.012001573415.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, 142090, Troitsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Odessa University, 65009, Odessa-9, Ukraine",
"Russian Academy of Sciences, 142090, Troitsk, Russia"
],
"type": "Organization"
},
"familyName": "Khetselius",
"givenName": "Olga Yu.",
"id": "sg:person.014624751311.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "UK National Academy of Sciences and Bookdata Co, SW1Y 5AG, London, UK",
"id": "http://www.grid.ac/institutes/None",
"name": [
"UK National Academy of Sciences and Bookdata Co, SW1Y 5AG, London, UK"
],
"type": "Organization"
},
"familyName": "Lovett",
"givenName": "Ludmila",
"id": "sg:person.011172223533.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172223533.03"
],
"type": "Person"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "We discuss the cooperative electron \u03b2-nuclear processes in atoms and molecules, including the excitation, ionization, electronic rearrangement, induced by the nuclear reactions and \u03b2-decay. The relativistic many-body perturbation theory (PT) with the optimized Dirac\u2013Kohn\u2013Sham (DKS) zeroth approximation is used to calculate the \u03b2-decay parameters for a number of allowed (superallowed) transitions (33P\u201333S, 241Pu\u2013241Am, etc.) and study a chemical bond effect on \u03b2-decay parameters. A few factors are taken into account: changing the integration limits in the Fermi function integral, energy corrections for different chemical substances and the possibility of the bound \u03b2-decay or other decay channels. We studied the electronic rearrangement induced by nuclear transmutation in the \u03b2-decay \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${}_{\\rm{2}}^{\\rm{6}} {\\rm{He}}_{\\rm{4}} \\to ({}_3^6 {\\rm{Li}}_{\\rm{3}}^{\\rm{ + }} )^* + e^ - + \\bar \\nu _e $\\end{document}. The half-life period T1 / 2 for \u03b2-decay of tritium atom (ion) has been estimated while taking into account the bound \u03b2-decay channel and some other accompanying effects. The estimated values of T1 / 2 for the tritium \u03b2-decay and free triton decay are (T1 / 2)a=12.26 years (correction due to the electron-atomic effects (\u0394 T1 / 2/T1 / 2)a=0.82%) for the tritium atom and (T1 / 2)t=12.36 years for the triton decay. These data are in physically reasonable agreement with experimental data. We first present the value T1 / 2 in a case of the \u03b2-decay in the halogen-containing molecular tritium (3HCl): (T1 / 2)m=12.28 years (3HCl) and the correction due to the chemical bond effect is (\u0394 T1 / 2)am=0.024 (i.e. 0.20%).",
"editor": [
{
"familyName": "Piecuch",
"givenName": "Piotr",
"type": "Person"
},
{
"familyName": "Maruani",
"givenName": "Jean",
"type": "Person"
},
{
"familyName": "Delgado-Barrio",
"givenName": "Gerardo",
"type": "Person"
},
{
"familyName": "Wilson",
"givenName": "Stephen",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-90-481-2985-0_7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-90-481-2984-3",
"978-90-481-2985-0"
],
"name": "Advances in the Theory of Atomic and Molecular Systems",
"type": "Book"
},
"keywords": [
"triton decay",
"decay channels",
"chemical bond effects",
"electronic rearrangement",
"perturbation theory",
"decay parameters",
"tritium atoms",
"body perturbation theory",
"T1/",
"electron \u03b2",
"nuclear spectroscopy",
"nuclear reactions",
"nuclear transmutation",
"tritium \u03b2",
"Dirac-Kohn",
"molecular tritium",
"energy corrections",
"nuclear processes",
"atoms",
"decay",
"bond effect",
"reasonable agreement",
"zeroth approximation",
"experimental data",
"electrons",
"ionization",
"excitation",
"function integrals",
"integration limits",
"spectroscopy",
"correction",
"transmutation",
"transition",
"approximation",
"molecules",
"channels",
"parameters",
"agreement",
"tritium",
"limit",
"integrals",
"theory",
"different chemical substances",
"account",
"effect",
"possibility",
"reaction",
"data",
"rearrangement",
"values",
"process",
"cases",
"number",
"chemical substances",
"factors",
"substances",
"years"
],
"name": "Electron-\u03b2-Nuclear Spectroscopy of Atoms and Molecules and Chemical Bond Effect on the \u03b2-Decay Parameters",
"pagination": "125-152",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002770820"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-90-481-2985-0_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-90-481-2985-0_7",
"https://app.dimensions.ai/details/publication/pub.1002770820"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_12.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-90-481-2985-0_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2985-0_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2985-0_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2985-0_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2985-0_7'
This table displays all metadata directly associated to this object as RDF triples.
150 TRIPLES
23 PREDICATES
83 URIs
76 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-90-481-2985-0_7 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N2d2a8ec69f534618aa1739797569c8cd |
4 | ″ | schema:datePublished | 2009 |
5 | ″ | schema:datePublishedReg | 2009-01-01 |
6 | ″ | schema:description | We discuss the cooperative electron β-nuclear processes in atoms and molecules, including the excitation, ionization, electronic rearrangement, induced by the nuclear reactions and β-decay. The relativistic many-body perturbation theory (PT) with the optimized Dirac–Kohn–Sham (DKS) zeroth approximation is used to calculate the β-decay parameters for a number of allowed (superallowed) transitions (33P–33S, 241Pu–241Am, etc.) and study a chemical bond effect on β-decay parameters. A few factors are taken into account: changing the integration limits in the Fermi function integral, energy corrections for different chemical substances and the possibility of the bound β-decay or other decay channels. We studied the electronic rearrangement induced by nuclear transmutation in the β-decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{\rm{2}}^{\rm{6}} {\rm{He}}_{\rm{4}} \to ({}_3^6 {\rm{Li}}_{\rm{3}}^{\rm{ + }} )^* + e^ - + \bar \nu _e $\end{document}. The half-life period T1 / 2 for β-decay of tritium atom (ion) has been estimated while taking into account the bound β-decay channel and some other accompanying effects. The estimated values of T1 / 2 for the tritium β-decay and free triton decay are (T1 / 2)a=12.26 years (correction due to the electron-atomic effects (Δ T1 / 2/T1 / 2)a=0.82%) for the tritium atom and (T1 / 2)t=12.36 years for the triton decay. These data are in physically reasonable agreement with experimental data. We first present the value T1 / 2 in a case of the β-decay in the halogen-containing molecular tritium (3HCl): (T1 / 2)m=12.28 years (3HCl) and the correction due to the chemical bond effect is (Δ T1 / 2)am=0.024 (i.e. 0.20%). |
7 | ″ | schema:editor | N5d3c7f825aae4ee7b4ef40318653d1b8 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N598ff892cc4a42cd9018627547eee27c |
12 | ″ | schema:keywords | Dirac-Kohn |
13 | ″ | ″ | T1/ |
14 | ″ | ″ | account |
15 | ″ | ″ | agreement |
16 | ″ | ″ | approximation |
17 | ″ | ″ | atoms |
18 | ″ | ″ | body perturbation theory |
19 | ″ | ″ | bond effect |
20 | ″ | ″ | cases |
21 | ″ | ″ | channels |
22 | ″ | ″ | chemical bond effects |
23 | ″ | ″ | chemical substances |
24 | ″ | ″ | correction |
25 | ″ | ″ | data |
26 | ″ | ″ | decay |
27 | ″ | ″ | decay channels |
28 | ″ | ″ | decay parameters |
29 | ″ | ″ | different chemical substances |
30 | ″ | ″ | effect |
31 | ″ | ″ | electron β |
32 | ″ | ″ | electronic rearrangement |
33 | ″ | ″ | electrons |
34 | ″ | ″ | energy corrections |
35 | ″ | ″ | excitation |
36 | ″ | ″ | experimental data |
37 | ″ | ″ | factors |
38 | ″ | ″ | function integrals |
39 | ″ | ″ | integrals |
40 | ″ | ″ | integration limits |
41 | ″ | ″ | ionization |
42 | ″ | ″ | limit |
43 | ″ | ″ | molecular tritium |
44 | ″ | ″ | molecules |
45 | ″ | ″ | nuclear processes |
46 | ″ | ″ | nuclear reactions |
47 | ″ | ″ | nuclear spectroscopy |
48 | ″ | ″ | nuclear transmutation |
49 | ″ | ″ | number |
50 | ″ | ″ | parameters |
51 | ″ | ″ | perturbation theory |
52 | ″ | ″ | possibility |
53 | ″ | ″ | process |
54 | ″ | ″ | reaction |
55 | ″ | ″ | rearrangement |
56 | ″ | ″ | reasonable agreement |
57 | ″ | ″ | spectroscopy |
58 | ″ | ″ | substances |
59 | ″ | ″ | theory |
60 | ″ | ″ | transition |
61 | ″ | ″ | transmutation |
62 | ″ | ″ | tritium |
63 | ″ | ″ | tritium atoms |
64 | ″ | ″ | tritium β |
65 | ″ | ″ | triton decay |
66 | ″ | ″ | values |
67 | ″ | ″ | years |
68 | ″ | ″ | zeroth approximation |
69 | ″ | schema:name | Electron-β-Nuclear Spectroscopy of Atoms and Molecules and Chemical Bond Effect on the β-Decay Parameters |
70 | ″ | schema:pagination | 125-152 |
71 | ″ | schema:productId | N436c92e0b44146d39e0906bd4fda48fe |
72 | ″ | ″ | N8c884888cf2f43eeaed396963cbec761 |
73 | ″ | schema:publisher | N8c6253977702457d9ad9ab33ebf2aeaa |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002770820 |
75 | ″ | ″ | https://doi.org/10.1007/978-90-481-2985-0_7 |
76 | ″ | schema:sdDatePublished | 2022-05-20T07:41 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | Ne276084ebaba48c69b5389d46ee34ada |
79 | ″ | schema:url | https://doi.org/10.1007/978-90-481-2985-0_7 |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | chapters |
82 | ″ | rdf:type | schema:Chapter |
83 | N1b5522454ec84d20bfda2a91f6093ae3 | rdf:first | sg:person.011172223533.03 |
84 | ″ | rdf:rest | rdf:nil |
85 | N2d2a8ec69f534618aa1739797569c8cd | rdf:first | sg:person.012001573415.12 |
86 | ″ | rdf:rest | Nf2bbb8d136764358bde9e410af1810b8 |
87 | N386b1a30726940eabf6364a8cfbba620 | rdf:first | N78c5db5b838742839bdc819a66f1019c |
88 | ″ | rdf:rest | N676459fb3efe4fe9b841e6a48202a613 |
89 | N436c92e0b44146d39e0906bd4fda48fe | schema:name | doi |
90 | ″ | schema:value | 10.1007/978-90-481-2985-0_7 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N598ff892cc4a42cd9018627547eee27c | schema:isbn | 978-90-481-2984-3 |
93 | ″ | ″ | 978-90-481-2985-0 |
94 | ″ | schema:name | Advances in the Theory of Atomic and Molecular Systems |
95 | ″ | rdf:type | schema:Book |
96 | N5ad001f21d914ecd80e3941ed3ba0e41 | schema:familyName | Piecuch |
97 | ″ | schema:givenName | Piotr |
98 | ″ | rdf:type | schema:Person |
99 | N5d3c7f825aae4ee7b4ef40318653d1b8 | rdf:first | N5ad001f21d914ecd80e3941ed3ba0e41 |
100 | ″ | rdf:rest | Nb5f88f4e11354dcc83710f9f0b01da9c |
101 | N676459fb3efe4fe9b841e6a48202a613 | rdf:first | Nb7ae85edd94a4b1996316051dbf5456e |
102 | ″ | rdf:rest | rdf:nil |
103 | N78c5db5b838742839bdc819a66f1019c | schema:familyName | Delgado-Barrio |
104 | ″ | schema:givenName | Gerardo |
105 | ″ | rdf:type | schema:Person |
106 | N8c6253977702457d9ad9ab33ebf2aeaa | schema:name | Springer Nature |
107 | ″ | rdf:type | schema:Organisation |
108 | N8c884888cf2f43eeaed396963cbec761 | schema:name | dimensions_id |
109 | ″ | schema:value | pub.1002770820 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | N8cb199cec0ef41b094d94b8aab6e8b68 | schema:familyName | Maruani |
112 | ″ | schema:givenName | Jean |
113 | ″ | rdf:type | schema:Person |
114 | Nb5f88f4e11354dcc83710f9f0b01da9c | rdf:first | N8cb199cec0ef41b094d94b8aab6e8b68 |
115 | ″ | rdf:rest | N386b1a30726940eabf6364a8cfbba620 |
116 | Nb7ae85edd94a4b1996316051dbf5456e | schema:familyName | Wilson |
117 | ″ | schema:givenName | Stephen |
118 | ″ | rdf:type | schema:Person |
119 | Ne276084ebaba48c69b5389d46ee34ada | schema:name | Springer Nature - SN SciGraph project |
120 | ″ | rdf:type | schema:Organization |
121 | Nf2bbb8d136764358bde9e410af1810b8 | rdf:first | sg:person.014624751311.43 |
122 | ″ | rdf:rest | N1b5522454ec84d20bfda2a91f6093ae3 |
123 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Physical Sciences |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | sg:person.011172223533.03 | schema:affiliation | grid-institutes:None |
130 | ″ | schema:familyName | Lovett |
131 | ″ | schema:givenName | Ludmila |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011172223533.03 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.012001573415.12 | schema:affiliation | grid-institutes:grid.4886.2 |
135 | ″ | schema:familyName | Glushkov |
136 | ″ | schema:givenName | Alexander V. |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012001573415.12 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.014624751311.43 | schema:affiliation | grid-institutes:grid.4886.2 |
140 | ″ | schema:familyName | Khetselius |
141 | ″ | schema:givenName | Olga Yu. |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624751311.43 |
143 | ″ | rdf:type | schema:Person |
144 | grid-institutes:None | schema:alternateName | UK National Academy of Sciences and Bookdata Co, SW1Y 5AG, London, UK |
145 | ″ | schema:name | UK National Academy of Sciences and Bookdata Co, SW1Y 5AG, London, UK |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.4886.2 | schema:alternateName | Russian Academy of Sciences, 142090, Troitsk, Russia |
148 | ″ | schema:name | Odessa University, 65009, Odessa-9, Ukraine |
149 | ″ | ″ | Russian Academy of Sciences, 142090, Troitsk, Russia |
150 | ″ | rdf:type | schema:Organization |