Exponential Decay Laws in Perturbation Theory of Threshold and Embedded Eigenvalues View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Arne Jensen , Gheorghe Nenciu

ABSTRACT

Exponential decay laws for the metastable states resulting from perturbation of unstable eigenvalues are discussed. Eigenvalues embedded in the continuum as well as threshold eigenvalues are considered. Stationary methods are used, i.e. the evolution group is written in terms of the resolvent via Stone’s formula and a partition technique (Schur-Livsic-Feschbach-Grushin formula) is used to localize the essential terms. No analytic continuation of the resolvent is required. The main result is about the threshold case: for Schrödinger operators in odd dimensions the leading term of the life-time in the perturbation strength, ε, is of order ε2+ν/2, where ν is an odd integer, ν≥−1. Examples covering all values of ν are given. For eigenvalues properly embedded in the continuum the results sharpen the previous ones. More... »

PAGES

525-538

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-2810-5_35

DOI

http://dx.doi.org/10.1007/978-90-481-2810-5_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022870911


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg O, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5117.2", 
          "name": [
            "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg O, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "Arne", 
        "id": "sg:person.015240561701.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.418333.e", 
          "name": [
            "Faculty of Physics, University of Bucharest, P.O. Box MG 11, 077125, Bucharest, Romania", 
            "Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nenciu", 
        "givenName": "Gheorghe", 
        "id": "sg:person.015403713705.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Exponential decay laws for the metastable states resulting from perturbation of unstable eigenvalues are discussed. Eigenvalues embedded in the continuum as well as threshold eigenvalues are considered. Stationary methods are used, i.e. the evolution group is written in terms of the resolvent via Stone\u2019s formula and a partition technique (Schur-Livsic-Feschbach-Grushin formula) is used to localize the essential terms. No analytic continuation of the resolvent is required. The main result is about the threshold case: for Schr\u00f6dinger operators in odd dimensions the leading term of the life-time in the perturbation strength, \u03b5, is of order \u03b52+\u03bd/2, where \u03bd is an odd integer, \u03bd\u2265\u22121. Examples covering all values of \u03bd are given. For eigenvalues properly embedded in the continuum the results sharpen the previous ones.", 
    "editor": [
      {
        "familyName": "Sidoravi\u010dius", 
        "givenName": "Vladas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-2810-5_35", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-90-481-2809-9", 
        "978-90-481-2810-5"
      ], 
      "name": "New Trends in Mathematical Physics", 
      "type": "Book"
    }, 
    "keywords": [
      "exponential decay law", 
      "decay law", 
      "law", 
      "metastable states", 
      "state", 
      "perturbations", 
      "unstable eigenvalues", 
      "eigenvalues", 
      "continuum", 
      "threshold eigenvalue", 
      "stationary method", 
      "method", 
      "evolution group", 
      "group", 
      "terms", 
      "resolvent", 
      "Stone\u2019s formula", 
      "formula", 
      "partition technique", 
      "technique", 
      "essential terms", 
      "analytic continuation", 
      "continuation", 
      "main results", 
      "results", 
      "threshold case", 
      "cases", 
      "Schr\u00f6dinger operators", 
      "operators", 
      "odd dimensions", 
      "dimensions", 
      "perturbation strength", 
      "strength", 
      "order", 
      "odd integer", 
      "integers", 
      "example", 
      "values", 
      "previous ones", 
      "one", 
      "perturbation theory", 
      "theory", 
      "threshold", 
      "Embedded Eigenvalues"
    ], 
    "name": "Exponential Decay Laws in Perturbation Theory of Threshold and Embedded Eigenvalues", 
    "pagination": "525-538", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022870911"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-2810-5_35"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-2810-5_35", 
      "https://app.dimensions.ai/details/publication/pub.1022870911"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_449.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-90-481-2810-5_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2810-5_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2810-5_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2810-5_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2810-5_35'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-2810-5_35 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N191dd7f519464be7a972473a5b39601e
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Exponential decay laws for the metastable states resulting from perturbation of unstable eigenvalues are discussed. Eigenvalues embedded in the continuum as well as threshold eigenvalues are considered. Stationary methods are used, i.e. the evolution group is written in terms of the resolvent via Stone’s formula and a partition technique (Schur-Livsic-Feschbach-Grushin formula) is used to localize the essential terms. No analytic continuation of the resolvent is required. The main result is about the threshold case: for Schrödinger operators in odd dimensions the leading term of the life-time in the perturbation strength, ε, is of order ε2+ν/2, where ν is an odd integer, ν≥−1. Examples covering all values of ν are given. For eigenvalues properly embedded in the continuum the results sharpen the previous ones.
7 schema:editor N64c5d9d047874e3e92e6d8e5d5cdc2e7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc3ddea3918e7457fb59a5bd336f64e99
12 schema:keywords Embedded Eigenvalues
13 Schrödinger operators
14 Stone’s formula
15 analytic continuation
16 cases
17 continuation
18 continuum
19 decay law
20 dimensions
21 eigenvalues
22 essential terms
23 evolution group
24 example
25 exponential decay law
26 formula
27 group
28 integers
29 law
30 main results
31 metastable states
32 method
33 odd dimensions
34 odd integer
35 one
36 operators
37 order
38 partition technique
39 perturbation strength
40 perturbation theory
41 perturbations
42 previous ones
43 resolvent
44 results
45 state
46 stationary method
47 strength
48 technique
49 terms
50 theory
51 threshold
52 threshold case
53 threshold eigenvalue
54 unstable eigenvalues
55 values
56 schema:name Exponential Decay Laws in Perturbation Theory of Threshold and Embedded Eigenvalues
57 schema:pagination 525-538
58 schema:productId N29d4120ce498439fb88d2f5e11f34685
59 N982a1b2c1669475ea328ddaaedec47bb
60 schema:publisher N81f2825dcceb4901acf111128e1f9c4c
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022870911
62 https://doi.org/10.1007/978-90-481-2810-5_35
63 schema:sdDatePublished 2022-01-01T19:25
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N36bac922c90e43a1ad17a32a00b41c8a
66 schema:url https://doi.org/10.1007/978-90-481-2810-5_35
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N191dd7f519464be7a972473a5b39601e rdf:first sg:person.015240561701.11
71 rdf:rest N8d03cad77c3346848021c2715176e68f
72 N29d4120ce498439fb88d2f5e11f34685 schema:name dimensions_id
73 schema:value pub.1022870911
74 rdf:type schema:PropertyValue
75 N36bac922c90e43a1ad17a32a00b41c8a schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N548d0e4ff04d486e80671cd97e40d58e schema:familyName Sidoravičius
78 schema:givenName Vladas
79 rdf:type schema:Person
80 N64c5d9d047874e3e92e6d8e5d5cdc2e7 rdf:first N548d0e4ff04d486e80671cd97e40d58e
81 rdf:rest rdf:nil
82 N81f2825dcceb4901acf111128e1f9c4c schema:name Springer Nature
83 rdf:type schema:Organisation
84 N8d03cad77c3346848021c2715176e68f rdf:first sg:person.015403713705.47
85 rdf:rest rdf:nil
86 N982a1b2c1669475ea328ddaaedec47bb schema:name doi
87 schema:value 10.1007/978-90-481-2810-5_35
88 rdf:type schema:PropertyValue
89 Nc3ddea3918e7457fb59a5bd336f64e99 schema:isbn 978-90-481-2809-9
90 978-90-481-2810-5
91 schema:name New Trends in Mathematical Physics
92 rdf:type schema:Book
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
97 schema:name Pure Mathematics
98 rdf:type schema:DefinedTerm
99 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
100 schema:familyName Jensen
101 schema:givenName Arne
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
103 rdf:type schema:Person
104 sg:person.015403713705.47 schema:affiliation grid-institutes:grid.418333.e
105 schema:familyName Nenciu
106 schema:givenName Gheorghe
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47
108 rdf:type schema:Person
109 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700, Bucharest, Romania
110 schema:name Faculty of Physics, University of Bucharest, P.O. Box MG 11, 077125, Bucharest, Romania
111 Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700, Bucharest, Romania
112 rdf:type schema:Organization
113 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg O, Denmark
114 schema:name Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg O, Denmark
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...