Multiscale Modeling: A Review View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-08-01

AUTHORS

M. F. Horstemeyer

ABSTRACT

This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos). More... »

PAGES

87-135

Book

TITLE

Practical Aspects of Computational Chemistry

ISBN

978-90-481-2686-6
978-90-481-2687-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4

DOI

http://dx.doi.org/10.1007/978-90-481-2687-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011950684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA", 
          "id": "http://www.grid.ac/institutes/grid.260120.7", 
          "name": [
            "Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horstemeyer", 
        "givenName": "M. F.", 
        "id": "sg:person.016137446537.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137446537.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-08-01", 
    "datePublishedReg": "2009-08-01", 
    "description": "This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).", 
    "editor": [
      {
        "familyName": "Leszczynski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }, 
      {
        "familyName": "Shukla", 
        "givenName": "Manoj K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-2687-3_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-2686-6", 
        "978-90-481-2687-3"
      ], 
      "name": "Practical Aspects of Computational Chemistry", 
      "type": "Book"
    }, 
    "keywords": [
      "multiscale modeling", 
      "multiscale modeling methodology", 
      "parallel computing power", 
      "length scales", 
      "multiscale methodology", 
      "structure-property relations", 
      "fundamental notions", 
      "multiple length scales", 
      "modeling methodology", 
      "different length scales", 
      "solid materials", 
      "computing power", 
      "modeling", 
      "experimental capabilities", 
      "structural components", 
      "atomic level", 
      "experimental influence", 
      "different sizes", 
      "theory", 
      "methodology", 
      "materials", 
      "different disciplines", 
      "influence", 
      "rope", 
      "design", 
      "capability", 
      "power", 
      "da Vinci", 
      "notion", 
      "different regions", 
      "rapid growth", 
      "scale", 
      "recent rapid growth", 
      "size", 
      "components", 
      "results", 
      "relation", 
      "example", 
      "disciplines", 
      "Vinci", 
      "brief history", 
      "region", 
      "growth", 
      "research", 
      "review", 
      "levels", 
      "confluence", 
      "world", 
      "twentieth century", 
      "century", 
      "history", 
      "late twentieth century"
    ], 
    "name": "Multiscale Modeling: A Review", 
    "pagination": "87-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011950684"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-2687-3_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-2687-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1011950684"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_386.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-90-481-2687-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-2687-3_4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N226272aa714a4409a5905fbaeff42310
4 schema:datePublished 2009-08-01
5 schema:datePublishedReg 2009-08-01
6 schema:description This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
7 schema:editor Nd4b93efbad1e48e3824ceeea75f8fc82
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3c03b23277e94b1b84413487062fafac
11 schema:keywords Vinci
12 atomic level
13 brief history
14 capability
15 century
16 components
17 computing power
18 confluence
19 da Vinci
20 design
21 different disciplines
22 different length scales
23 different regions
24 different sizes
25 disciplines
26 example
27 experimental capabilities
28 experimental influence
29 fundamental notions
30 growth
31 history
32 influence
33 late twentieth century
34 length scales
35 levels
36 materials
37 methodology
38 modeling
39 modeling methodology
40 multiple length scales
41 multiscale methodology
42 multiscale modeling
43 multiscale modeling methodology
44 notion
45 parallel computing power
46 power
47 rapid growth
48 recent rapid growth
49 region
50 relation
51 research
52 results
53 review
54 rope
55 scale
56 size
57 solid materials
58 structural components
59 structure-property relations
60 theory
61 twentieth century
62 world
63 schema:name Multiscale Modeling: A Review
64 schema:pagination 87-135
65 schema:productId N1bbd0e52e5cc43db9e770239e9df55c6
66 N33f5d94575e2470fb346cd793f69dc22
67 schema:publisher Nce91c3f768c94b058890228cf055ce8e
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011950684
69 https://doi.org/10.1007/978-90-481-2687-3_4
70 schema:sdDatePublished 2022-11-24T21:17
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N8af4e718106c4ddd82ac7a2dba477beb
73 schema:url https://doi.org/10.1007/978-90-481-2687-3_4
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N000b74efcfcb4157b1083d923758d0b8 schema:familyName Leszczynski
78 schema:givenName Jerzy
79 rdf:type schema:Person
80 N19709acc1b7e4639822737f0d96b2bb9 rdf:first N1b968add51ce4ffe826b70c9c592945f
81 rdf:rest rdf:nil
82 N1b968add51ce4ffe826b70c9c592945f schema:familyName Shukla
83 schema:givenName Manoj K.
84 rdf:type schema:Person
85 N1bbd0e52e5cc43db9e770239e9df55c6 schema:name doi
86 schema:value 10.1007/978-90-481-2687-3_4
87 rdf:type schema:PropertyValue
88 N226272aa714a4409a5905fbaeff42310 rdf:first sg:person.016137446537.15
89 rdf:rest rdf:nil
90 N33f5d94575e2470fb346cd793f69dc22 schema:name dimensions_id
91 schema:value pub.1011950684
92 rdf:type schema:PropertyValue
93 N3c03b23277e94b1b84413487062fafac schema:isbn 978-90-481-2686-6
94 978-90-481-2687-3
95 schema:name Practical Aspects of Computational Chemistry
96 rdf:type schema:Book
97 N8af4e718106c4ddd82ac7a2dba477beb schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nce91c3f768c94b058890228cf055ce8e schema:name Springer Nature
100 rdf:type schema:Organisation
101 Nd4b93efbad1e48e3824ceeea75f8fc82 rdf:first N000b74efcfcb4157b1083d923758d0b8
102 rdf:rest N19709acc1b7e4639822737f0d96b2bb9
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:person.016137446537.15 schema:affiliation grid-institutes:grid.260120.7
110 schema:familyName Horstemeyer
111 schema:givenName M. F.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137446537.15
113 rdf:type schema:Person
114 grid-institutes:grid.260120.7 schema:alternateName Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA
115 schema:name Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...