Multiscale Modeling: A Review View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-08-01

AUTHORS

M. F. Horstemeyer

ABSTRACT

This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos). More... »

PAGES

87-135

Book

TITLE

Practical Aspects of Computational Chemistry

ISBN

978-90-481-2686-6
978-90-481-2687-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4

DOI

http://dx.doi.org/10.1007/978-90-481-2687-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011950684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA", 
          "id": "http://www.grid.ac/institutes/grid.260120.7", 
          "name": [
            "Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horstemeyer", 
        "givenName": "M. F.", 
        "id": "sg:person.016137446537.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137446537.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-08-01", 
    "datePublishedReg": "2009-08-01", 
    "description": "This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).", 
    "editor": [
      {
        "familyName": "Leszczynski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }, 
      {
        "familyName": "Shukla", 
        "givenName": "Manoj K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-90-481-2687-3_4", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-90-481-2686-6", 
        "978-90-481-2687-3"
      ], 
      "name": "Practical Aspects of Computational Chemistry", 
      "type": "Book"
    }, 
    "keywords": [
      "multiscale modeling", 
      "multiscale modeling methodology", 
      "parallel computing power", 
      "length scales", 
      "multiscale methodology", 
      "structure-property relations", 
      "fundamental notions", 
      "multiple length scales", 
      "modeling methodology", 
      "different length scales", 
      "solid materials", 
      "computing power", 
      "modeling", 
      "experimental capabilities", 
      "structural components", 
      "atomic level", 
      "experimental influence", 
      "different sizes", 
      "theory", 
      "methodology", 
      "materials", 
      "different disciplines", 
      "influence", 
      "rope", 
      "design", 
      "capability", 
      "power", 
      "da Vinci", 
      "notion", 
      "different regions", 
      "rapid growth", 
      "scale", 
      "recent rapid growth", 
      "size", 
      "components", 
      "results", 
      "relation", 
      "example", 
      "disciplines", 
      "Vinci", 
      "brief history", 
      "region", 
      "growth", 
      "research", 
      "review", 
      "levels", 
      "confluence", 
      "world", 
      "twentieth century", 
      "century", 
      "history", 
      "late twentieth century"
    ], 
    "name": "Multiscale Modeling: A Review", 
    "pagination": "87-135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011950684"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-90-481-2687-3_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-90-481-2687-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1011950684"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_77.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-90-481-2687-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2687-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-90-481-2687-3_4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb96c400d0aac462a9c9832c1ce945715
4 schema:datePublished 2009-08-01
5 schema:datePublishedReg 2009-08-01
6 schema:description This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
7 schema:editor Nd2881002400a4ff99b1370726a7ec8c3
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N15d84ae24c6b4d109357bf93707b5402
11 schema:keywords Vinci
12 atomic level
13 brief history
14 capability
15 century
16 components
17 computing power
18 confluence
19 da Vinci
20 design
21 different disciplines
22 different length scales
23 different regions
24 different sizes
25 disciplines
26 example
27 experimental capabilities
28 experimental influence
29 fundamental notions
30 growth
31 history
32 influence
33 late twentieth century
34 length scales
35 levels
36 materials
37 methodology
38 modeling
39 modeling methodology
40 multiple length scales
41 multiscale methodology
42 multiscale modeling
43 multiscale modeling methodology
44 notion
45 parallel computing power
46 power
47 rapid growth
48 recent rapid growth
49 region
50 relation
51 research
52 results
53 review
54 rope
55 scale
56 size
57 solid materials
58 structural components
59 structure-property relations
60 theory
61 twentieth century
62 world
63 schema:name Multiscale Modeling: A Review
64 schema:pagination 87-135
65 schema:productId N2e55e048fba94987bc0d628b3af039c8
66 Nf8d895a354734a2086af6b984e6cf07f
67 schema:publisher N79216b2ee27d406e87925c8b1ea41861
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011950684
69 https://doi.org/10.1007/978-90-481-2687-3_4
70 schema:sdDatePublished 2022-12-01T06:55
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N84fa33dac0b54c10a5690e9a23bf7922
73 schema:url https://doi.org/10.1007/978-90-481-2687-3_4
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N15d84ae24c6b4d109357bf93707b5402 schema:isbn 978-90-481-2686-6
78 978-90-481-2687-3
79 schema:name Practical Aspects of Computational Chemistry
80 rdf:type schema:Book
81 N253c0a90e2b3493cad259984851f232d rdf:first N7a2c5849aace450a877c22af5a834c96
82 rdf:rest rdf:nil
83 N2e55e048fba94987bc0d628b3af039c8 schema:name doi
84 schema:value 10.1007/978-90-481-2687-3_4
85 rdf:type schema:PropertyValue
86 N79216b2ee27d406e87925c8b1ea41861 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N7a2c5849aace450a877c22af5a834c96 schema:familyName Shukla
89 schema:givenName Manoj K.
90 rdf:type schema:Person
91 N84fa33dac0b54c10a5690e9a23bf7922 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Na0deea2989b346169a7be57c33d4c4e7 schema:familyName Leszczynski
94 schema:givenName Jerzy
95 rdf:type schema:Person
96 Nb96c400d0aac462a9c9832c1ce945715 rdf:first sg:person.016137446537.15
97 rdf:rest rdf:nil
98 Nd2881002400a4ff99b1370726a7ec8c3 rdf:first Na0deea2989b346169a7be57c33d4c4e7
99 rdf:rest N253c0a90e2b3493cad259984851f232d
100 Nf8d895a354734a2086af6b984e6cf07f schema:name dimensions_id
101 schema:value pub.1011950684
102 rdf:type schema:PropertyValue
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:person.016137446537.15 schema:affiliation grid-institutes:grid.260120.7
110 schema:familyName Horstemeyer
111 schema:givenName M. F.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137446537.15
113 rdf:type schema:Person
114 grid-institutes:grid.260120.7 schema:alternateName Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA
115 schema:name Department of Mechanical Engineering, Mississippi State University, 39760, Mississippi, MS, USA
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...