Multilayer Perceptron Training Optimization for High Speed Impacts Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Angel Garcia-Crespo , Belen Ruiz-Mezcua , Israel Gonzalez-Carrasco , Jose Luis Lopez-Cuadrado

ABSTRACT

The construction of structures subjected to impact was traditionally carried out empirically, relying on real impact tests. The need for design tools to simulate this process triggered the development in recent years of a large number of models of different types. Taking into account the difficulties of these methods, poor precision and high computational cost, a neural network for the classification of the result of impacts on steel armours was designed. Furthermore, the numerical simulation method was used to obtain a set of input patterns to probe the capacity of themodel development. In the problem tackled with, the available data for the network designed include, the geometrical parameters of the solids involved — radius and length of the projectile, thickness of the steel armour — and the impact velocity, while the response of the system is the prediction about the plate perforation. More... »

PAGES

377-388

References to SciGraph publications

  • 1989-12. Approximation by superpositions of a sigmoidal function in MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS
  • Book

    TITLE

    Advances in Electrical Engineering and Computational Science

    ISBN

    978-90-481-2310-0
    978-90-481-2311-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-90-481-2311-7_32

    DOI

    http://dx.doi.org/10.1007/978-90-481-2311-7_32

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041001793


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30 \u2014 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garcia-Crespo", 
            "givenName": "Angel", 
            "id": "sg:person.011537037147.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30 \u2014 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruiz-Mezcua", 
            "givenName": "Belen", 
            "id": "sg:person.015556313103.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30 \u2014 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez-Carrasco", 
            "givenName": "Israel", 
            "id": "sg:person.012350277013.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30 \u2014 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopez-Cuadrado", 
            "givenName": "Jose Luis", 
            "id": "sg:person.013775622302.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2514/6.1992-2247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004289725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7949(96)00143-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019496218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02551274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023250347", 
              "https://doi.org/10.1007/bf02551274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025763367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025763367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041825702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041825702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042951002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.58323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061179719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/massp.1987.1165576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061385413"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "The construction of structures subjected to impact was traditionally carried out empirically, relying on real impact tests. The need for design tools to simulate this process triggered the development in recent years of a large number of models of different types. Taking into account the difficulties of these methods, poor precision and high computational cost, a neural network for the classification of the result of impacts on steel armours was designed. Furthermore, the numerical simulation method was used to obtain a set of input patterns to probe the capacity of themodel development. In the problem tackled with, the available data for the network designed include, the geometrical parameters of the solids involved \u2014 radius and length of the projectile, thickness of the steel armour \u2014 and the impact velocity, while the response of the system is the prediction about the plate perforation.", 
        "editor": [
          {
            "familyName": "Ao", 
            "givenName": "Sio-Iong", 
            "type": "Person"
          }, 
          {
            "familyName": "Gelman", 
            "givenName": "Len", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-90-481-2310-0", 
            "978-90-481-2311-7"
          ], 
          "name": "Advances in Electrical Engineering and Computational Science", 
          "type": "Book"
        }, 
        "name": "Multilayer Perceptron Training Optimization for High Speed Impacts Classification", 
        "pagination": "377-388", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041001793"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-90-481-2311-7_32"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c351d00a5d7e20f5e018d1fbc6d8d3b61c72ad63295e0212890ca2a7d600568a"
            ]
          }
        ], 
        "publisher": {
          "location": "Dordrecht", 
          "name": "Springer Netherlands", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-90-481-2311-7_32", 
          "https://app.dimensions.ai/details/publication/pub.1041001793"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45339_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-90-481-2311-7_32"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2311-7_32'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2311-7_32'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2311-7_32'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-90-481-2311-7_32'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-90-481-2311-7_32 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N8a6c5f74b2f9422b889add301484e8b9
    4 schema:citation sg:pub.10.1007/bf02551274
    5 https://doi.org/10.1016/0893-6080(89)90020-8
    6 https://doi.org/10.1016/j.compstruc.2003.06.001
    7 https://doi.org/10.1016/j.engfracmech.2003.12.004
    8 https://doi.org/10.1016/s0045-7825(02)00221-9
    9 https://doi.org/10.1016/s0045-7949(96)00143-5
    10 https://doi.org/10.1016/s0304-3800(02)00257-0
    11 https://doi.org/10.1109/5.58323
    12 https://doi.org/10.1109/massp.1987.1165576
    13 https://doi.org/10.2514/6.1992-2247
    14 schema:datePublished 2009
    15 schema:datePublishedReg 2009-01-01
    16 schema:description The construction of structures subjected to impact was traditionally carried out empirically, relying on real impact tests. The need for design tools to simulate this process triggered the development in recent years of a large number of models of different types. Taking into account the difficulties of these methods, poor precision and high computational cost, a neural network for the classification of the result of impacts on steel armours was designed. Furthermore, the numerical simulation method was used to obtain a set of input patterns to probe the capacity of themodel development. In the problem tackled with, the available data for the network designed include, the geometrical parameters of the solids involved — radius and length of the projectile, thickness of the steel armour — and the impact velocity, while the response of the system is the prediction about the plate perforation.
    17 schema:editor Ne0e051c557784c1db79c851245900aef
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N2c1fc0bb5f20497998dc51aa3e93154d
    22 schema:name Multilayer Perceptron Training Optimization for High Speed Impacts Classification
    23 schema:pagination 377-388
    24 schema:productId N9c208ba57557492ba9b735e9ce65bb3b
    25 Nb1f1e86991b94340897cc895f327e96c
    26 Ne2c5ffd6d03a422da5dde22a24cf7fc9
    27 schema:publisher N85cfa67e9c0d4d308030a31f50b861d9
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041001793
    29 https://doi.org/10.1007/978-90-481-2311-7_32
    30 schema:sdDatePublished 2019-04-16T07:10
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N6d13aff7117c40fc824ab9c8f87f533a
    33 schema:url https://link.springer.com/10.1007%2F978-90-481-2311-7_32
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N12f50868c3f24031a1c3f6154534f68c schema:familyName Gelman
    38 schema:givenName Len
    39 rdf:type schema:Person
    40 N2c1fc0bb5f20497998dc51aa3e93154d schema:isbn 978-90-481-2310-0
    41 978-90-481-2311-7
    42 schema:name Advances in Electrical Engineering and Computational Science
    43 rdf:type schema:Book
    44 N43ac850d972248669b7bbb5986a4c762 rdf:first sg:person.013775622302.48
    45 rdf:rest rdf:nil
    46 N5040a7cf3fcc4f89b53c44bfb37a907c rdf:first N12f50868c3f24031a1c3f6154534f68c
    47 rdf:rest rdf:nil
    48 N516d64fe2ded4aab827f57f2d4d48a96 rdf:first sg:person.015556313103.67
    49 rdf:rest N60daeebf08194e88b5f1049c3c34160c
    50 N60daeebf08194e88b5f1049c3c34160c rdf:first sg:person.012350277013.42
    51 rdf:rest N43ac850d972248669b7bbb5986a4c762
    52 N6d13aff7117c40fc824ab9c8f87f533a schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N85cfa67e9c0d4d308030a31f50b861d9 schema:location Dordrecht
    55 schema:name Springer Netherlands
    56 rdf:type schema:Organisation
    57 N8a6c5f74b2f9422b889add301484e8b9 rdf:first sg:person.011537037147.86
    58 rdf:rest N516d64fe2ded4aab827f57f2d4d48a96
    59 N9c208ba57557492ba9b735e9ce65bb3b schema:name doi
    60 schema:value 10.1007/978-90-481-2311-7_32
    61 rdf:type schema:PropertyValue
    62 Nb1f1e86991b94340897cc895f327e96c schema:name dimensions_id
    63 schema:value pub.1041001793
    64 rdf:type schema:PropertyValue
    65 Ne0e051c557784c1db79c851245900aef rdf:first Nf49ba221203a4126a7eebcb2f24ebd3c
    66 rdf:rest N5040a7cf3fcc4f89b53c44bfb37a907c
    67 Ne2c5ffd6d03a422da5dde22a24cf7fc9 schema:name readcube_id
    68 schema:value c351d00a5d7e20f5e018d1fbc6d8d3b61c72ad63295e0212890ca2a7d600568a
    69 rdf:type schema:PropertyValue
    70 Nf49ba221203a4126a7eebcb2f24ebd3c schema:familyName Ao
    71 schema:givenName Sio-Iong
    72 rdf:type schema:Person
    73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Engineering
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Civil Engineering
    78 rdf:type schema:DefinedTerm
    79 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    80 schema:familyName Garcia-Crespo
    81 schema:givenName Angel
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
    83 rdf:type schema:Person
    84 sg:person.012350277013.42 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    85 schema:familyName Gonzalez-Carrasco
    86 schema:givenName Israel
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42
    88 rdf:type schema:Person
    89 sg:person.013775622302.48 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    90 schema:familyName Lopez-Cuadrado
    91 schema:givenName Jose Luis
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48
    93 rdf:type schema:Person
    94 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    95 schema:familyName Ruiz-Mezcua
    96 schema:givenName Belen
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
    100 https://doi.org/10.1007/bf02551274
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.compstruc.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041825702
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0045-7949(96)00143-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019496218
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0304-3800(02)00257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025763367
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1109/5.58323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179719
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1109/massp.1987.1165576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385413
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.2514/6.1992-2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004289725
    119 rdf:type schema:CreativeWork
    120 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    121 schema:name Department of Computer Science, Universidad Carlos III, Av. Universidad 30 — 28911, Leganes, Madrid, Spain
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...