Sub-Finsler Geometry and Finite Propagation Speed View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Michael G. Cowling , Alessio Martini

ABSTRACT

We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.

PAGES

147-205

References to SciGraph publications

Book

TITLE

Trends in Harmonic Analysis

ISBN

978-88-470-2852-4
978-88-470-2853-1

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-88-470-2853-1_8

DOI

http://dx.doi.org/10.1007/978-88-470-2853-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040297722


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "School of Mathematics and Statistics, University of New South Wales, UNSW, Sydney, NSW, 2052, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowling", 
        "givenName": "Michael G.", 
        "id": "sg:person.011601211625.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601211625.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UNSW Australia", 
          "id": "https://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "School of Mathematics and Statistics, University of New South Wales, UNSW, Sydney, NSW, 2052, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martini", 
        "givenName": "Alessio", 
        "id": "sg:person.010431264635.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431264635.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0078245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002422567", 
          "https://doi.org/10.1007/bfb0078245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1011077577", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61798-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077577", 
          "https://doi.org/10.1007/978-3-642-61798-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61798-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011077577", 
          "https://doi.org/10.1007/978-3-642-61798-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87823-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706818", 
          "https://doi.org/10.1007/978-0-387-87823-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-87823-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706818", 
          "https://doi.org/10.1007/978-0-387-87823-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021248889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2261-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028851853", 
          "https://doi.org/10.1007/978-1-4757-2261-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2261-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028851853", 
          "https://doi.org/10.1007/978-1-4757-2261-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-64988-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040354939", 
          "https://doi.org/10.1007/978-3-642-64988-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-64988-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040354939", 
          "https://doi.org/10.1007/978-3-642-64988-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757458", 
          "https://doi.org/10.1007/978-0-387-73892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-73892-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041757458", 
          "https://doi.org/10.1007/978-0-387-73892-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045748318", 
          "https://doi.org/10.1007/bf02819446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02819446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045748318", 
          "https://doi.org/10.1007/bf02819446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(73)90003-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047944901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098702172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ulect/031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098716479"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.", 
    "editor": [
      {
        "familyName": "Picardello", 
        "givenName": "Massimo A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-88-470-2853-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3561602", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-88-470-2852-4", 
        "978-88-470-2853-1"
      ], 
      "name": "Trends in Harmonic Analysis", 
      "type": "Book"
    }, 
    "name": "Sub-Finsler Geometry and Finite Propagation Speed", 
    "pagination": "147-205", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-88-470-2853-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bff60b1aab83cffe3276909d304a49c21e339f470a19a8920e31cca3c08696bd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040297722"
        ]
      }
    ], 
    "publisher": {
      "location": "Milano", 
      "name": "Springer Milan", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-88-470-2853-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1040297722"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000268.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-88-470-2853-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-88-470-2853-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-88-470-2853-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-88-470-2853-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-88-470-2853-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-88-470-2853-1_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2f40ef88049a4b25a65b998c3974631f
4 schema:citation sg:pub.10.1007/978-0-387-73892-5
5 sg:pub.10.1007/978-0-387-87823-2
6 sg:pub.10.1007/978-1-4757-2261-1
7 sg:pub.10.1007/978-3-642-61798-0
8 sg:pub.10.1007/978-3-642-64988-2
9 sg:pub.10.1007/bf02819446
10 sg:pub.10.1007/bfb0078245
11 https://app.dimensions.ai/details/publication/pub.1011077577
12 https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a
13 https://doi.org/10.1016/0022-1236(73)90003-7
14 https://doi.org/10.1090/surv/091
15 https://doi.org/10.1090/ulect/031
16 schema:datePublished 2013
17 schema:datePublishedReg 2013-01-01
18 schema:description We prove a number of results on the geometry associated to the solutions of first-order differential operators on manifolds. In particular, we consider distance functions associated to a first-order operator, and discuss the associated geometry, which is sometimes surprisingly different to Riemannian geometry.
19 schema:editor Naa0d42e5a6104b0b9048fea008b2b6d0
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nb7b4a2ad8cd842c6ac9232997536c873
24 schema:name Sub-Finsler Geometry and Finite Propagation Speed
25 schema:pagination 147-205
26 schema:productId N2089b19dba494360bf40ab16554a1e7a
27 N322f7b2471c04bc18494d8dfbdb9b038
28 Nf78cf3e9f57b47829803f593cc628873
29 schema:publisher Nd29a43c52a5a46d3b9a7cd1c18fad764
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040297722
31 https://doi.org/10.1007/978-88-470-2853-1_8
32 schema:sdDatePublished 2019-04-15T22:57
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N21d54ebdcc4c4fe8998bb8e7a6b9daac
35 schema:url http://link.springer.com/10.1007/978-88-470-2853-1_8
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N1a567b31887f4112aed7e72ffe7f29c3 schema:familyName Picardello
40 schema:givenName Massimo A.
41 rdf:type schema:Person
42 N2089b19dba494360bf40ab16554a1e7a schema:name readcube_id
43 schema:value bff60b1aab83cffe3276909d304a49c21e339f470a19a8920e31cca3c08696bd
44 rdf:type schema:PropertyValue
45 N21d54ebdcc4c4fe8998bb8e7a6b9daac schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N2f40ef88049a4b25a65b998c3974631f rdf:first sg:person.011601211625.97
48 rdf:rest N7bdb0308e942439e888b1c2103d9d89a
49 N322f7b2471c04bc18494d8dfbdb9b038 schema:name doi
50 schema:value 10.1007/978-88-470-2853-1_8
51 rdf:type schema:PropertyValue
52 N7bdb0308e942439e888b1c2103d9d89a rdf:first sg:person.010431264635.10
53 rdf:rest rdf:nil
54 Naa0d42e5a6104b0b9048fea008b2b6d0 rdf:first N1a567b31887f4112aed7e72ffe7f29c3
55 rdf:rest rdf:nil
56 Nb7b4a2ad8cd842c6ac9232997536c873 schema:isbn 978-88-470-2852-4
57 978-88-470-2853-1
58 schema:name Trends in Harmonic Analysis
59 rdf:type schema:Book
60 Nd29a43c52a5a46d3b9a7cd1c18fad764 schema:location Milano
61 schema:name Springer Milan
62 rdf:type schema:Organisation
63 Nf78cf3e9f57b47829803f593cc628873 schema:name dimensions_id
64 schema:value pub.1040297722
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:grant.3561602 http://pending.schema.org/fundedItem sg:pub.10.1007/978-88-470-2853-1_8
73 rdf:type schema:MonetaryGrant
74 sg:person.010431264635.10 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
75 schema:familyName Martini
76 schema:givenName Alessio
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010431264635.10
78 rdf:type schema:Person
79 sg:person.011601211625.97 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
80 schema:familyName Cowling
81 schema:givenName Michael G.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601211625.97
83 rdf:type schema:Person
84 sg:pub.10.1007/978-0-387-73892-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041757458
85 https://doi.org/10.1007/978-0-387-73892-5
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-0-387-87823-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706818
88 https://doi.org/10.1007/978-0-387-87823-2
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-1-4757-2261-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028851853
91 https://doi.org/10.1007/978-1-4757-2261-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-642-61798-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077577
94 https://doi.org/10.1007/978-3-642-61798-0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-64988-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040354939
97 https://doi.org/10.1007/978-3-642-64988-2
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02819446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045748318
100 https://doi.org/10.1007/bf02819446
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bfb0078245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002422567
103 https://doi.org/10.1007/bfb0078245
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1011077577 schema:CreativeWork
106 https://doi.org/10.1002/(sici)1097-0312(199610)49:10<1081::aid-cpa3>3.0.co;2-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021248889
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0022-1236(73)90003-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047944901
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/surv/091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702172
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1090/ulect/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098716479
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
115 schema:name School of Mathematics and Statistics, University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...