The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Yu-Cheng Chang , Wei-Hung Chiang

ABSTRACT

Graphene is a unique form of carbon nanomaterials, and it possesses exceptional properties including high electrical conductivity, high thermal conductivity, high surface area, high mechanical strength, and high chemical stability. However, pristine graphene is a zero-band-gap material, making it difficult to be used in many applications required materials with a band gap. There are several methods to modify the properties of graphene and heteroatom doping has been demonstrated as an effective method to create a band gap in graphene. Heteroatom doping can endow graphene with various enhanced optical, electromagnetic, structural, and physicochemical properties, making graphene become a promising material in various applications including nanoelectronics, catalysis, energy storage, functional composites, and biomedical applications. Since heteroatom-doped graphene is both of academic and technical importance, here we comprehensively discuss the properties, synthetic methods, emerging applications, and the present status of various aspects of this important issue to assist a better understanding of doped graphene materials. More... »

PAGES

103-133

Book

TITLE

Advances in Nanomaterials

ISBN

978-81-322-2666-6
978-81-322-2668-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-2668-0_3

DOI

http://dx.doi.org/10.1007/978-81-322-2668-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034885693


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Chemical Engineering, National Taiwan University of Science and Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Yu-Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemical Engineering, National Taiwan University of Science and Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiang", 
        "givenName": "Wei-Hung", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Graphene is a unique form of carbon nanomaterials, and it possesses exceptional properties including high electrical conductivity, high thermal conductivity, high surface area, high mechanical strength, and high chemical stability. However, pristine graphene is a zero-band-gap material, making it difficult to be used in many applications required materials with a band gap. There are several methods to modify the properties of graphene and heteroatom doping has been demonstrated as an effective method to create a band gap in graphene. Heteroatom doping can endow graphene with various enhanced optical, electromagnetic, structural, and physicochemical properties, making graphene become a promising material in various applications including nanoelectronics, catalysis, energy storage, functional composites, and biomedical applications. Since heteroatom-doped graphene is both of academic and technical importance, here we comprehensively discuss the properties, synthetic methods, emerging applications, and the present status of various aspects of this important issue to assist a better understanding of doped graphene materials.", 
    "editor": [
      {
        "familyName": "Husain", 
        "givenName": "Mushahid", 
        "type": "Person"
      }, 
      {
        "familyName": "Khan", 
        "givenName": "Zishan Husain", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-2668-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-2666-6", 
        "978-81-322-2668-0"
      ], 
      "name": "Advances in Nanomaterials", 
      "type": "Book"
    }, 
    "name": "The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes", 
    "pagination": "103-133", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-2668-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a62ecabc792575dbd175dd8be410c28ad0470195c3bdbb75032ff32433174214"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034885693"
        ]
      }
    ], 
    "publisher": {
      "location": "New Delhi", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-2668-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1034885693"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000060.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-2668-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2668-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2668-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2668-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2668-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-2668-0_3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne361de6e539545328b3ee727f4825263
4 schema:datePublished 2016
5 schema:datePublishedReg 2016-01-01
6 schema:description Graphene is a unique form of carbon nanomaterials, and it possesses exceptional properties including high electrical conductivity, high thermal conductivity, high surface area, high mechanical strength, and high chemical stability. However, pristine graphene is a zero-band-gap material, making it difficult to be used in many applications required materials with a band gap. There are several methods to modify the properties of graphene and heteroatom doping has been demonstrated as an effective method to create a band gap in graphene. Heteroatom doping can endow graphene with various enhanced optical, electromagnetic, structural, and physicochemical properties, making graphene become a promising material in various applications including nanoelectronics, catalysis, energy storage, functional composites, and biomedical applications. Since heteroatom-doped graphene is both of academic and technical importance, here we comprehensively discuss the properties, synthetic methods, emerging applications, and the present status of various aspects of this important issue to assist a better understanding of doped graphene materials.
7 schema:editor N6d5146c63ca547f6a71cdd0c618d671e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf8c984b78f764f8baefa3e54bbf3a2a7
12 schema:name The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes
13 schema:pagination 103-133
14 schema:productId N0072c5bd3436476d9ebe39472b213740
15 N6c5b1659cbe54e809e2b916f2fd47417
16 N86517e18fbe64c74852ca4cb3bd1633c
17 schema:publisher N1339c0ca56144c9ab71ae37eaf1874f1
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034885693
19 https://doi.org/10.1007/978-81-322-2668-0_3
20 schema:sdDatePublished 2019-04-15T14:12
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4d879975bd7143559c0f1c05193ba489
23 schema:url http://link.springer.com/10.1007/978-81-322-2668-0_3
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0072c5bd3436476d9ebe39472b213740 schema:name doi
28 schema:value 10.1007/978-81-322-2668-0_3
29 rdf:type schema:PropertyValue
30 N009b7e1499a34a3ebd468630ed0d7832 rdf:first N4e4c8d1560574bed943b177a4195cba1
31 rdf:rest rdf:nil
32 N1339c0ca56144c9ab71ae37eaf1874f1 schema:location New Delhi
33 schema:name Springer India
34 rdf:type schema:Organisation
35 N3177231781144c8c8702ca594be42830 schema:name Department of Chemical Engineering, National Taiwan University of Science and Technology
36 rdf:type schema:Organization
37 N4d879975bd7143559c0f1c05193ba489 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N4e4c8d1560574bed943b177a4195cba1 schema:affiliation Nf5c41b62ee7e42748a25da20c80cc697
40 schema:familyName Chiang
41 schema:givenName Wei-Hung
42 rdf:type schema:Person
43 N6c5b1659cbe54e809e2b916f2fd47417 schema:name readcube_id
44 schema:value a62ecabc792575dbd175dd8be410c28ad0470195c3bdbb75032ff32433174214
45 rdf:type schema:PropertyValue
46 N6d5146c63ca547f6a71cdd0c618d671e rdf:first Ndab03b996298452c8785fd56ec0e9b6c
47 rdf:rest Ne77e3fef788141a297d59e9736c09d2e
48 N86517e18fbe64c74852ca4cb3bd1633c schema:name dimensions_id
49 schema:value pub.1034885693
50 rdf:type schema:PropertyValue
51 Nc6502ca9abfc4f378886e01ef47fec77 schema:familyName Khan
52 schema:givenName Zishan Husain
53 rdf:type schema:Person
54 Nc717044a19c7454dabaa45d70b555fd4 schema:affiliation N3177231781144c8c8702ca594be42830
55 schema:familyName Chang
56 schema:givenName Yu-Cheng
57 rdf:type schema:Person
58 Ndab03b996298452c8785fd56ec0e9b6c schema:familyName Husain
59 schema:givenName Mushahid
60 rdf:type schema:Person
61 Ne361de6e539545328b3ee727f4825263 rdf:first Nc717044a19c7454dabaa45d70b555fd4
62 rdf:rest N009b7e1499a34a3ebd468630ed0d7832
63 Ne77e3fef788141a297d59e9736c09d2e rdf:first Nc6502ca9abfc4f378886e01ef47fec77
64 rdf:rest rdf:nil
65 Nf5c41b62ee7e42748a25da20c80cc697 schema:name Department of Chemical Engineering, National Taiwan University of Science and Technology
66 rdf:type schema:Organization
67 Nf8c984b78f764f8baefa3e54bbf3a2a7 schema:isbn 978-81-322-2666-6
68 978-81-322-2668-0
69 schema:name Advances in Nanomaterials
70 rdf:type schema:Book
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
75 schema:name Materials Engineering
76 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...