An Approach of DDOS Attack Detection Using Classifiers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Khundrakpam Johnson Singh , Tanmay De

ABSTRACT

To defend and protect web server from the attack, it is important to know the nature and the behaviour of legitimate and illegitimate clients. It is also important to provide access to the legitimate clients and provide a defence system against illegitimate clients. The Distributed Denial of Service (DDoS) attack is a critical threat to the Internet. By using its application layer protocol DDoS can cause a massive destruction by silently making an entrance to the web server as it act as one of the legitimate clients. The paper uses parameter of the network packet like http GET, POST request and delta time to compute the accuracy in finding out the possible attack. We use different classifiers like Naive Bayes, Naive Bayes Multinomial, Multilayer Perception, RBF network, Random Forest etc. to classify the attack generated dataset. We compare the accuracy, true positive rate, false positive rate of each algorithm by finding the confusion matrix. More... »

PAGES

429-437

Book

TITLE

Emerging Research in Computing, Information, Communication and Applications

ISBN

978-81-322-2549-2
978-81-322-2550-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-2550-8_41

DOI

http://dx.doi.org/10.1007/978-81-322-2550-8_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037743296


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of CSE, National Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Khundrakpam Johnson", 
        "id": "sg:person.013241112216.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241112216.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of CSE, National Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De", 
        "givenName": "Tanmay", 
        "id": "sg:person.016571164751.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571164751.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cose.2013.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.adhoc.2013.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044490667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.1999.832627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094416811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2003.1250975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094900935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmlc.2013.6890364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095210960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdcs.2008.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095413467"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "To defend and protect web server from the attack, it is important to know the nature and the behaviour of legitimate and illegitimate clients. It is also important to provide access to the legitimate clients and provide a defence system against illegitimate clients. The Distributed Denial of Service (DDoS) attack is a critical threat to the Internet. By using its application layer protocol DDoS can cause a massive destruction by silently making an entrance to the web server as it act as one of the legitimate clients. The paper uses parameter of the network packet like http GET, POST request and delta time to compute the accuracy in finding out the possible attack. We use different classifiers like Naive Bayes, Naive Bayes Multinomial, Multilayer Perception, RBF network, Random Forest etc. to classify the attack generated dataset. We compare the accuracy, true positive rate, false positive rate of each algorithm by finding the confusion matrix.", 
    "editor": [
      {
        "familyName": "Shetty", 
        "givenName": "N. R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Prasad", 
        "givenName": "N.H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Nalini", 
        "givenName": "N.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-2550-8_41", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-2549-2", 
        "978-81-322-2550-8"
      ], 
      "name": "Emerging Research in Computing, Information, Communication and Applications", 
      "type": "Book"
    }, 
    "name": "An Approach of DDOS Attack Detection Using Classifiers", 
    "pagination": "429-437", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-2550-8_41"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3cbb752ae79e56194c7ac5c0723a699176251a30ac0edf448bb83718a93ae27"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037743296"
        ]
      }
    ], 
    "publisher": {
      "location": "New Delhi", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-2550-8_41", 
      "https://app.dimensions.ai/details/publication/pub.1037743296"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000065.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-2550-8_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2550-8_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2550-8_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2550-8_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2550-8_41'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-2550-8_41 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N08ac57c0c96c4f6fad25669207f55f09
4 schema:citation https://doi.org/10.1016/j.adhoc.2013.11.006
5 https://doi.org/10.1016/j.cose.2013.04.007
6 https://doi.org/10.1109/icdcs.2008.10
7 https://doi.org/10.1109/icdm.2003.1250975
8 https://doi.org/10.1109/icmlc.2013.6890364
9 https://doi.org/10.1109/ijcnn.1999.832627
10 schema:datePublished 2015
11 schema:datePublishedReg 2015-01-01
12 schema:description To defend and protect web server from the attack, it is important to know the nature and the behaviour of legitimate and illegitimate clients. It is also important to provide access to the legitimate clients and provide a defence system against illegitimate clients. The Distributed Denial of Service (DDoS) attack is a critical threat to the Internet. By using its application layer protocol DDoS can cause a massive destruction by silently making an entrance to the web server as it act as one of the legitimate clients. The paper uses parameter of the network packet like http GET, POST request and delta time to compute the accuracy in finding out the possible attack. We use different classifiers like Naive Bayes, Naive Bayes Multinomial, Multilayer Perception, RBF network, Random Forest etc. to classify the attack generated dataset. We compare the accuracy, true positive rate, false positive rate of each algorithm by finding the confusion matrix.
13 schema:editor N32e056dc4a824b53b2077a02d3e88743
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nd1d6733ead094ea1a18e9c8b987c4957
18 schema:name An Approach of DDOS Attack Detection Using Classifiers
19 schema:pagination 429-437
20 schema:productId N3bbbd34a5ab74fdd8947f1ecc299bcc3
21 N671080483a1c4dac853845dcc22d6427
22 Nfba24f6e0c7c4e589b3ee5031c23d194
23 schema:publisher Nae791c5e18b943ff90d955e393c6274c
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743296
25 https://doi.org/10.1007/978-81-322-2550-8_41
26 schema:sdDatePublished 2019-04-15T23:40
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N72ce5241e5844b57bf0955cebfdc5efb
29 schema:url http://link.springer.com/10.1007/978-81-322-2550-8_41
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N033c19bab67947cab0b21437bad1c460 schema:familyName Prasad
34 schema:givenName N.H.
35 rdf:type schema:Person
36 N08ac57c0c96c4f6fad25669207f55f09 rdf:first sg:person.013241112216.57
37 rdf:rest N148250d1ba75420fa9523b44907f490c
38 N148250d1ba75420fa9523b44907f490c rdf:first sg:person.016571164751.14
39 rdf:rest rdf:nil
40 N265988107b0840ea956cd345ebe2e513 rdf:first N2fc0e88cb7874b288d22aca6015cfd79
41 rdf:rest rdf:nil
42 N2fc0e88cb7874b288d22aca6015cfd79 schema:familyName Nalini
43 schema:givenName N.
44 rdf:type schema:Person
45 N32e056dc4a824b53b2077a02d3e88743 rdf:first N97de630fc60d4b7e97441c5f12ee39cc
46 rdf:rest N5e62b18635a04a0e8cb72f596429c737
47 N39fca5b5d50a4670a923975c068c4132 schema:name Department of CSE, National Institute of Technology
48 rdf:type schema:Organization
49 N3bbbd34a5ab74fdd8947f1ecc299bcc3 schema:name readcube_id
50 schema:value b3cbb752ae79e56194c7ac5c0723a699176251a30ac0edf448bb83718a93ae27
51 rdf:type schema:PropertyValue
52 N5e62b18635a04a0e8cb72f596429c737 rdf:first N033c19bab67947cab0b21437bad1c460
53 rdf:rest N265988107b0840ea956cd345ebe2e513
54 N671080483a1c4dac853845dcc22d6427 schema:name doi
55 schema:value 10.1007/978-81-322-2550-8_41
56 rdf:type schema:PropertyValue
57 N72ce5241e5844b57bf0955cebfdc5efb schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N97de630fc60d4b7e97441c5f12ee39cc schema:familyName Shetty
60 schema:givenName N. R.
61 rdf:type schema:Person
62 N9a193aecc2f2498386ba34674e040df3 schema:name Department of CSE, National Institute of Technology
63 rdf:type schema:Organization
64 Nae791c5e18b943ff90d955e393c6274c schema:location New Delhi
65 schema:name Springer India
66 rdf:type schema:Organisation
67 Nd1d6733ead094ea1a18e9c8b987c4957 schema:isbn 978-81-322-2549-2
68 978-81-322-2550-8
69 schema:name Emerging Research in Computing, Information, Communication and Applications
70 rdf:type schema:Book
71 Nfba24f6e0c7c4e589b3ee5031c23d194 schema:name dimensions_id
72 schema:value pub.1037743296
73 rdf:type schema:PropertyValue
74 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
75 schema:name Technology
76 rdf:type schema:DefinedTerm
77 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
78 schema:name Communications Technologies
79 rdf:type schema:DefinedTerm
80 sg:person.013241112216.57 schema:affiliation N9a193aecc2f2498386ba34674e040df3
81 schema:familyName Singh
82 schema:givenName Khundrakpam Johnson
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013241112216.57
84 rdf:type schema:Person
85 sg:person.016571164751.14 schema:affiliation N39fca5b5d50a4670a923975c068c4132
86 schema:familyName De
87 schema:givenName Tanmay
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016571164751.14
89 rdf:type schema:Person
90 https://doi.org/10.1016/j.adhoc.2013.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044490667
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.cose.2013.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106752
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/icdcs.2008.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095413467
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/icdm.2003.1250975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094900935
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/icmlc.2013.6890364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095210960
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/ijcnn.1999.832627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094416811
101 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...