Two Person Interaction Detection Using Kinect Sensor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Sriparna Saha , Amit Konar , Ramadoss Janarthanan

ABSTRACT

This proposed work explains a noble two-person interaction modelling system using Kinect sensor. Here a pentagon for each person is formed taking the three dimensional co-ordinate information with the help of Microsoft’s Kinect sensor. Five Euclidean distances between two pentagon vertices corresponding to two persons are considered as features for each frame. So the body gestures of two persons are analysed employing pentagons. Based on these, eight interactions between two persons are modelled. This system produces the best recognition rate (greater than 90 %) with the virtue of multi-class support vector machine for rotation invariance case and for rotation variance phenomenon, the recognition rate is greater than 80 %. More... »

PAGES

167-176

References to SciGraph publications

Book

TITLE

Facets of Uncertainties and Applications

ISBN

978-81-322-2300-9
978-81-322-2301-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-2301-6_13

DOI

http://dx.doi.org/10.1007/978-81-322-2301-6_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011361668


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Electronics and Telecommunication Engineering Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saha", 
        "givenName": "Sriparna", 
        "id": "sg:person.011526334455.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526334455.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Electronics and Telecommunication Engineering Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Computer Science and Engineering Department, TJS Engineering College, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "Ramadoss", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/cviu.2000.0897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003035974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003130462", 
          "https://doi.org/10.1007/b138935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003130462", 
          "https://doi.org/10.1007/b138935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(99)00087-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004237062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(01)95359-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018023535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051675329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051675329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053132543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2012.2195156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061338174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2011.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061388493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2011.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061388527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2011.320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061388593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2012.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061410292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mpot.2012.2187110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061417896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2006.889491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2012.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219467808003180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062993873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2012.6239234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095163699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/namw.1997.609843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095546309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "This proposed work explains a noble two-person interaction modelling system using Kinect sensor. Here a pentagon for each person is formed taking the three dimensional co-ordinate information with the help of Microsoft\u2019s Kinect sensor. Five Euclidean distances between two pentagon vertices corresponding to two persons are considered as features for each frame. So the body gestures of two persons are analysed employing pentagons. Based on these, eight interactions between two persons are modelled. This system produces the best recognition rate (greater than 90\u00a0%) with the virtue of multi-class support vector machine for rotation invariance case and for rotation variance phenomenon, the recognition rate is greater than 80\u00a0%.", 
    "editor": [
      {
        "familyName": "Chakraborty", 
        "givenName": "Mihir K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Skowron", 
        "givenName": "Andrzej", 
        "type": "Person"
      }, 
      {
        "familyName": "Maiti", 
        "givenName": "Manoranjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Kar", 
        "givenName": "Samarjit", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-2301-6_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-2300-9", 
        "978-81-322-2301-6"
      ], 
      "name": "Facets of Uncertainties and Applications", 
      "type": "Book"
    }, 
    "name": "Two Person Interaction Detection Using Kinect Sensor", 
    "pagination": "167-176", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-2301-6_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36214813a5ec44409b3df3504f973e9bec4256d5a6b8321795210008608bbaf9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011361668"
        ]
      }
    ], 
    "publisher": {
      "location": "New Delhi", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-2301-6_13", 
      "https://app.dimensions.ai/details/publication/pub.1011361668"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000250.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-2301-6_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2301-6_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2301-6_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2301-6_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2301-6_13'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-2301-6_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N243c22d33e3f4282bec668ecfe012106
4 schema:citation sg:pub.10.1007/b138935
5 https://doi.org/10.1006/cviu.2000.0897
6 https://doi.org/10.1016/s0003-2670(01)95359-0
7 https://doi.org/10.1016/s0031-3203(02)00100-0
8 https://doi.org/10.1016/s0167-8655(99)00087-2
9 https://doi.org/10.1109/cvprw.2012.6239234
10 https://doi.org/10.1109/jstsp.2012.2195156
11 https://doi.org/10.1109/mc.2011.114
12 https://doi.org/10.1109/mc.2011.190
13 https://doi.org/10.1109/mc.2011.320
14 https://doi.org/10.1109/mmul.2012.24
15 https://doi.org/10.1109/mpot.2012.2187110
16 https://doi.org/10.1109/namw.1997.609843
17 https://doi.org/10.1109/tit.1967.1053964
18 https://doi.org/10.1109/tpami.2006.21
19 https://doi.org/10.1109/tpami.2012.125
20 https://doi.org/10.1109/tro.2006.889491
21 https://doi.org/10.1109/tvcg.2012.56
22 https://doi.org/10.1142/s0219467808003180
23 https://doi.org/10.1162/089976698300017197
24 schema:datePublished 2015
25 schema:datePublishedReg 2015-01-01
26 schema:description This proposed work explains a noble two-person interaction modelling system using Kinect sensor. Here a pentagon for each person is formed taking the three dimensional co-ordinate information with the help of Microsoft’s Kinect sensor. Five Euclidean distances between two pentagon vertices corresponding to two persons are considered as features for each frame. So the body gestures of two persons are analysed employing pentagons. Based on these, eight interactions between two persons are modelled. This system produces the best recognition rate (greater than 90 %) with the virtue of multi-class support vector machine for rotation invariance case and for rotation variance phenomenon, the recognition rate is greater than 80 %.
27 schema:editor N527988215d5941ce8a35f29a50615f1b
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Naa55c8da578b4775b80f7eb4cfdffe1d
32 schema:name Two Person Interaction Detection Using Kinect Sensor
33 schema:pagination 167-176
34 schema:productId N180e6d2a27cf4c1fb719ce14178f9238
35 N40947f3c6b504990bfc23943e050db88
36 N82046240211b41488140ca030a16b58e
37 schema:publisher Naddd592c8ace4a1ebea0622cf20124fb
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011361668
39 https://doi.org/10.1007/978-81-322-2301-6_13
40 schema:sdDatePublished 2019-04-15T13:26
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Necaad3c6026f43b894973c81bfff1b0b
43 schema:url http://link.springer.com/10.1007/978-81-322-2301-6_13
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N180e6d2a27cf4c1fb719ce14178f9238 schema:name doi
48 schema:value 10.1007/978-81-322-2301-6_13
49 rdf:type schema:PropertyValue
50 N243c22d33e3f4282bec668ecfe012106 rdf:first sg:person.011526334455.36
51 rdf:rest N3a4924d4ae1f4afa985e3364b911b95d
52 N3a4924d4ae1f4afa985e3364b911b95d rdf:first sg:person.01337053064.29
53 rdf:rest Na3d88c71fbb049fa92d882ffd2ed76fa
54 N40947f3c6b504990bfc23943e050db88 schema:name readcube_id
55 schema:value 36214813a5ec44409b3df3504f973e9bec4256d5a6b8321795210008608bbaf9
56 rdf:type schema:PropertyValue
57 N527988215d5941ce8a35f29a50615f1b rdf:first N75969fbde61c4b31b9e74c377641b86c
58 rdf:rest Nacd0810a98ed4924aee7bd8e535967cb
59 N75969fbde61c4b31b9e74c377641b86c schema:familyName Chakraborty
60 schema:givenName Mihir K.
61 rdf:type schema:Person
62 N82046240211b41488140ca030a16b58e schema:name dimensions_id
63 schema:value pub.1011361668
64 rdf:type schema:PropertyValue
65 N832f31fa44b24d3abb8e3c3cdea2ce65 schema:name Computer Science and Engineering Department, TJS Engineering College, Chennai, India
66 rdf:type schema:Organization
67 Na3d88c71fbb049fa92d882ffd2ed76fa rdf:first sg:person.013316247664.76
68 rdf:rest rdf:nil
69 Naa55c8da578b4775b80f7eb4cfdffe1d schema:isbn 978-81-322-2300-9
70 978-81-322-2301-6
71 schema:name Facets of Uncertainties and Applications
72 rdf:type schema:Book
73 Nacd0810a98ed4924aee7bd8e535967cb rdf:first Nb62ceadd44ad427a88df45b070e17142
74 rdf:rest Nce1681ba13ba48eb8d548978af2b1268
75 Naddd592c8ace4a1ebea0622cf20124fb schema:location New Delhi
76 schema:name Springer India
77 rdf:type schema:Organisation
78 Nb62ceadd44ad427a88df45b070e17142 schema:familyName Skowron
79 schema:givenName Andrzej
80 rdf:type schema:Person
81 Nc0cfbd56106b48d69c652b310e4118f3 rdf:first Ne721734357764b48b2bc98dd8b6031a3
82 rdf:rest rdf:nil
83 Nc2790769d31e4b59b103b1d67aa1fa4e schema:familyName Maiti
84 schema:givenName Manoranjan
85 rdf:type schema:Person
86 Nce1681ba13ba48eb8d548978af2b1268 rdf:first Nc2790769d31e4b59b103b1d67aa1fa4e
87 rdf:rest Nc0cfbd56106b48d69c652b310e4118f3
88 Ne721734357764b48b2bc98dd8b6031a3 schema:familyName Kar
89 schema:givenName Samarjit
90 rdf:type schema:Person
91 Necaad3c6026f43b894973c81bfff1b0b schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:person.011526334455.36 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
100 schema:familyName Saha
101 schema:givenName Sriparna
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526334455.36
103 rdf:type schema:Person
104 sg:person.013316247664.76 schema:affiliation N832f31fa44b24d3abb8e3c3cdea2ce65
105 schema:familyName Janarthanan
106 schema:givenName Ramadoss
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
108 rdf:type schema:Person
109 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
110 schema:familyName Konar
111 schema:givenName Amit
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
113 rdf:type schema:Person
114 sg:pub.10.1007/b138935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003130462
115 https://doi.org/10.1007/b138935
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1006/cviu.2000.0897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003035974
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0003-2670(01)95359-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018023535
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0031-3203(02)00100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051675329
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0167-8655(99)00087-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004237062
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cvprw.2012.6239234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095163699
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/jstsp.2012.2195156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338174
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/mc.2011.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388493
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/mc.2011.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388527
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/mc.2011.320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388593
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/mmul.2012.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061410292
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/mpot.2012.2187110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061417896
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/namw.1997.609843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095546309
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tpami.2006.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743044
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tpami.2012.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744241
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tro.2006.889491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784721
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tvcg.2012.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813933
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1142/s0219467808003180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062993873
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
156 schema:name Electronics and Telecommunication Engineering Department, Jadavpur University, Kolkata, India
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...