Performance Analysis of Feature Extractors for Object Recognition from EEG Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Anwesha Khasnobish , Saugat Bhattacharyya , Amit Konar , D. N. Tibarewala

ABSTRACT

Recognition of objects from EEG signals requires selection of appropriate feature extraction and classification techniques with best efficiency in terms of highest classification accuracy with lowest run time for its applications in real time. The objective of this paper is to analyze the performance of various feature extraction techniques and to choose that particular method which can be implemented in real time system with best efficiency. The EEG signals are acquired from subjects while they explored the objects visually and visuo-tactually. Thus acquired EEG signals are preprocessed followed by feature extraction using adaptive autoregressive (AAR) parameters, ensemble empirical mode decomposition (EEMD), approximate entropy (ApEn) and multi-fractal detrended fluctuation analysis (MFDFA). The performance of these features are analyzed in terms of their dimension, extraction time and also depending upon the classification results produced by three classifiers [Support Vector machine (SVM), Naïve Bayesian (NB), and Adaboost (Ada)] independently according to classification accuracy, sensitivity and classification times. The experimental results show that AAR parameter has an optimum dimension of 36 (not too large like EEMD i.e. 7,680 or too small like ApEn i.e. 6) and required minimum extraction as well as classification time of 0.59 and 0.008 s respectively. AAR also yielded highest maximum classification accuracy and sensitivity of 80.95 and 92.31 % respectively with NB classifier. Thus AAR parameters can be chosen for real time object recognition from EEG signal along with Naïve Bayesian classifier. More... »

PAGES

249-261

References to SciGraph publications

  • 2013. Object Shape Recognition from EEG Signals during Tactile and Visual Exploration in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2005. Brain—Computer Interface in NEURAL ENGINEERING
  • Book

    TITLE

    Advancements of Medical Electronics

    ISBN

    978-81-322-2255-2
    978-81-322-2256-9

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-81-322-2256-9_23

    DOI

    http://dx.doi.org/10.1007/978-81-322-2256-9_23

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038285787


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience & Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khasnobish", 
            "givenName": "Anwesha", 
            "id": "sg:person.01260452574.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharyya", 
            "givenName": "Saugat", 
            "id": "sg:person.07421667055.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konar", 
            "givenName": "Amit", 
            "id": "sg:person.01337053064.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "School of Bioscience & Engineering, Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tibarewala", 
            "givenName": "D. N.", 
            "id": "sg:person.010726132604.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/9780470511923.ch7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006309296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.6.2297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013915142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-48610-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020162938", 
              "https://doi.org/10.1007/0-306-48610-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-48610-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020162938", 
              "https://doi.org/10.1007/0-306-48610-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-4328(82)90081-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028542015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-4328(82)90081-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028542015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-45062-4_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045519289", 
              "https://doi.org/10.1007/978-3-642-45062-4_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2002.802875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061739938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2005.862695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2006.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsmb.2010.5735358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094225216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.2011.5947265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094422485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.1997.757002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095398511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icra.2011.5980363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095544395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nabic.2012.6402239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095667470"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Recognition of objects from EEG signals requires selection of appropriate feature extraction and classification techniques with best efficiency in terms of highest classification accuracy with lowest run time for its applications in real time. The objective of this paper is to analyze the performance of various feature extraction techniques and to choose that particular method which can be implemented in real time system with best efficiency. The EEG signals are acquired from subjects while they explored the objects visually and visuo-tactually. Thus acquired EEG signals are preprocessed followed by feature extraction using adaptive autoregressive (AAR) parameters, ensemble empirical mode decomposition (EEMD), approximate entropy (ApEn) and multi-fractal detrended fluctuation analysis (MFDFA). The performance of these features are analyzed in terms of their dimension, extraction time and also depending upon the classification results produced by three classifiers [Support Vector machine (SVM), Na\u00efve Bayesian (NB), and Adaboost (Ada)] independently according to classification accuracy, sensitivity and classification times. The experimental results show that AAR parameter has an optimum dimension of 36 (not too large like EEMD i.e. 7,680 or too small like ApEn i.e. 6) and required minimum extraction as well as classification time of 0.59 and 0.008\u00a0s respectively. AAR also yielded highest maximum classification accuracy and sensitivity of 80.95 and 92.31\u00a0% respectively with NB classifier. Thus AAR parameters can be chosen for real time object recognition from EEG signal along with Na\u00efve Bayesian classifier.", 
        "editor": [
          {
            "familyName": "Gupta", 
            "givenName": "Somsubhra", 
            "type": "Person"
          }, 
          {
            "familyName": "Bag", 
            "givenName": "Sandip", 
            "type": "Person"
          }, 
          {
            "familyName": "Ganguly", 
            "givenName": "Karabi", 
            "type": "Person"
          }, 
          {
            "familyName": "Sarkar", 
            "givenName": "Indranath", 
            "type": "Person"
          }, 
          {
            "familyName": "Biswas", 
            "givenName": "Papun", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-81-322-2256-9_23", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-81-322-2255-2", 
            "978-81-322-2256-9"
          ], 
          "name": "Advancements of Medical Electronics", 
          "type": "Book"
        }, 
        "name": "Performance Analysis of Feature Extractors for Object Recognition from EEG Signals", 
        "pagination": "249-261", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-81-322-2256-9_23"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b66149fd7b556f9cd31d98860d132bf53add0a96ba6dd38feae9a0dda9791916"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038285787"
            ]
          }
        ], 
        "publisher": {
          "location": "New Delhi", 
          "name": "Springer India", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-81-322-2256-9_23", 
          "https://app.dimensions.ai/details/publication/pub.1038285787"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000267.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-81-322-2256-9_23"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2256-9_23'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2256-9_23'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2256-9_23'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-2256-9_23'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-81-322-2256-9_23 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5f2b7421be3d42339b9a5dc6b71e366e
    4 schema:citation sg:pub.10.1007/0-306-48610-5_3
    5 sg:pub.10.1007/978-3-642-45062-4_63
    6 https://doi.org/10.1002/9780470511923.ch7
    7 https://doi.org/10.1016/0166-4328(82)90081-x
    8 https://doi.org/10.1073/pnas.88.6.2297
    9 https://doi.org/10.1109/icassp.2011.5947265
    10 https://doi.org/10.1109/icra.2011.5980363
    11 https://doi.org/10.1109/icsmb.2010.5735358
    12 https://doi.org/10.1109/iembs.1997.757002
    13 https://doi.org/10.1109/nabic.2012.6402239
    14 https://doi.org/10.1109/tnsre.2002.802875
    15 https://doi.org/10.1109/tnsre.2005.862695
    16 https://doi.org/10.1109/tvcg.2006.2
    17 schema:datePublished 2015
    18 schema:datePublishedReg 2015-01-01
    19 schema:description Recognition of objects from EEG signals requires selection of appropriate feature extraction and classification techniques with best efficiency in terms of highest classification accuracy with lowest run time for its applications in real time. The objective of this paper is to analyze the performance of various feature extraction techniques and to choose that particular method which can be implemented in real time system with best efficiency. The EEG signals are acquired from subjects while they explored the objects visually and visuo-tactually. Thus acquired EEG signals are preprocessed followed by feature extraction using adaptive autoregressive (AAR) parameters, ensemble empirical mode decomposition (EEMD), approximate entropy (ApEn) and multi-fractal detrended fluctuation analysis (MFDFA). The performance of these features are analyzed in terms of their dimension, extraction time and also depending upon the classification results produced by three classifiers [Support Vector machine (SVM), Naïve Bayesian (NB), and Adaboost (Ada)] independently according to classification accuracy, sensitivity and classification times. The experimental results show that AAR parameter has an optimum dimension of 36 (not too large like EEMD i.e. 7,680 or too small like ApEn i.e. 6) and required minimum extraction as well as classification time of 0.59 and 0.008 s respectively. AAR also yielded highest maximum classification accuracy and sensitivity of 80.95 and 92.31 % respectively with NB classifier. Thus AAR parameters can be chosen for real time object recognition from EEG signal along with Naïve Bayesian classifier.
    20 schema:editor Ne587ad7934c0435095490860094d4dad
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N8812760950bb4166b3f8309a5c586236
    25 schema:name Performance Analysis of Feature Extractors for Object Recognition from EEG Signals
    26 schema:pagination 249-261
    27 schema:productId N7500eb13f84247739c3fb9dc66c7101d
    28 N7f9efdfe082142c9802f8cf26f1418de
    29 N968f8d7f04cb45d6bddd03dda97f1deb
    30 schema:publisher N1fd119a4227b49139a77d12aff28397a
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038285787
    32 https://doi.org/10.1007/978-81-322-2256-9_23
    33 schema:sdDatePublished 2019-04-15T16:18
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N5e070c4624954e7687287c53e7ad55f3
    36 schema:url http://link.springer.com/10.1007/978-81-322-2256-9_23
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N03fbc979b142497791e6fba6ed866cb2 rdf:first sg:person.010726132604.03
    41 rdf:rest rdf:nil
    42 N1ea9d072b46448498c55a50b73b99abf rdf:first Ne182ead46ef3490aac8ea0d5af9c13c4
    43 rdf:rest rdf:nil
    44 N1fd119a4227b49139a77d12aff28397a schema:location New Delhi
    45 schema:name Springer India
    46 rdf:type schema:Organisation
    47 N589445300011468b9c91fae5d85fffa6 schema:familyName Sarkar
    48 schema:givenName Indranath
    49 rdf:type schema:Person
    50 N5e070c4624954e7687287c53e7ad55f3 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N5f2b7421be3d42339b9a5dc6b71e366e rdf:first sg:person.01260452574.41
    53 rdf:rest Nbcb772b373a94febbd63ada8c159d89f
    54 N7500eb13f84247739c3fb9dc66c7101d schema:name readcube_id
    55 schema:value b66149fd7b556f9cd31d98860d132bf53add0a96ba6dd38feae9a0dda9791916
    56 rdf:type schema:PropertyValue
    57 N78dc9dbb19574db2bcd31956a4c2f21c rdf:first sg:person.01337053064.29
    58 rdf:rest N03fbc979b142497791e6fba6ed866cb2
    59 N7a2ddd5dd71445519432c9971c46b756 rdf:first Nd5be6688f58949f8a685d6f8e1981e95
    60 rdf:rest Naabe4b03b6444ace86c1c1fba9c24aef
    61 N7c68811311a8403ca05f747d51b5b12b schema:familyName Gupta
    62 schema:givenName Somsubhra
    63 rdf:type schema:Person
    64 N7f9efdfe082142c9802f8cf26f1418de schema:name doi
    65 schema:value 10.1007/978-81-322-2256-9_23
    66 rdf:type schema:PropertyValue
    67 N83b15951fe904cc5be32bb9900b7a689 rdf:first Nfde3355ed9754e8f91df3a44074d8352
    68 rdf:rest N7a2ddd5dd71445519432c9971c46b756
    69 N8812760950bb4166b3f8309a5c586236 schema:isbn 978-81-322-2255-2
    70 978-81-322-2256-9
    71 schema:name Advancements of Medical Electronics
    72 rdf:type schema:Book
    73 N968f8d7f04cb45d6bddd03dda97f1deb schema:name dimensions_id
    74 schema:value pub.1038285787
    75 rdf:type schema:PropertyValue
    76 Naabe4b03b6444ace86c1c1fba9c24aef rdf:first N589445300011468b9c91fae5d85fffa6
    77 rdf:rest N1ea9d072b46448498c55a50b73b99abf
    78 Nbcb772b373a94febbd63ada8c159d89f rdf:first sg:person.07421667055.72
    79 rdf:rest N78dc9dbb19574db2bcd31956a4c2f21c
    80 Nd5be6688f58949f8a685d6f8e1981e95 schema:familyName Ganguly
    81 schema:givenName Karabi
    82 rdf:type schema:Person
    83 Ne182ead46ef3490aac8ea0d5af9c13c4 schema:familyName Biswas
    84 schema:givenName Papun
    85 rdf:type schema:Person
    86 Ne587ad7934c0435095490860094d4dad rdf:first N7c68811311a8403ca05f747d51b5b12b
    87 rdf:rest N83b15951fe904cc5be32bb9900b7a689
    88 Nfde3355ed9754e8f91df3a44074d8352 schema:familyName Bag
    89 schema:givenName Sandip
    90 rdf:type schema:Person
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Artificial Intelligence and Image Processing
    96 rdf:type schema:DefinedTerm
    97 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    98 schema:familyName Tibarewala
    99 schema:givenName D. N.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
    101 rdf:type schema:Person
    102 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    103 schema:familyName Khasnobish
    104 schema:givenName Anwesha
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
    106 rdf:type schema:Person
    107 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    108 schema:familyName Konar
    109 schema:givenName Amit
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
    111 rdf:type schema:Person
    112 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    113 schema:familyName Bhattacharyya
    114 schema:givenName Saugat
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
    116 rdf:type schema:Person
    117 sg:pub.10.1007/0-306-48610-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020162938
    118 https://doi.org/10.1007/0-306-48610-5_3
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-642-45062-4_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045519289
    121 https://doi.org/10.1007/978-3-642-45062-4_63
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/9780470511923.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006309296
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0166-4328(82)90081-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028542015
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1073/pnas.88.6.2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013915142
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/icassp.2011.5947265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094422485
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/icra.2011.5980363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095544395
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/icsmb.2010.5735358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094225216
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/iembs.1997.757002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095398511
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/nabic.2012.6402239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095667470
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tnsre.2002.802875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739938
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tnsre.2005.862695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740142
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tvcg.2006.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812667
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    146 schema:name Department of Electronics & Telecommunication Engineering, Jadavpur University, Kolkata, India
    147 School of Bioscience & Engineering, Jadavpur University, Kolkata, India
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...