A Comparative Analysis of Emotion Recognition from Stimulated EEG Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Garima Singh , Arindam Jati , Anwesha Khasnobish , Saugat Bhattacharyya , Amit Konar , D. N Tibarewala , R Janarthanan

ABSTRACT

This paper proposes a scheme to utilize the unaltered direct outcome of brain’s activity viz. EEG signals for emotion detection that is a prerequisite for the development of an emotionally intelligent system. The aim of this work is to classify the emotional states experimentally elicited in different subjects, by extracting their features for the alpha, beta, and theta frequency bands of the acquired EEG data using PSD, EMD, wavelet transforms, statistical parameters, and Hjorth parameters and then classifying the same using LSVM, LDA, and kNN as classifiers for the purpose of categorizing the elicited emotions into the emotional states of neutral, happy, sad, and disgust. The experimental results being a comparative analysis of the different classifier performances equip us with the best accurate means of emotion recognition from the EEG signals. For all the eight subjects, neutral emotional state is classified with an average classification accuracy of 81.65 %, highest among the other three emotions. The negative emotions including sad and disgust have better average classification accuracy of 76.20 and 74.96 % as opposed to the positive emotion i.e., happy emotional state, the average classification accuracy of which turns out to be 73.42 %. More... »

PAGES

1109-1115

References to SciGraph publications

Book

TITLE

Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012

ISBN

978-81-322-1601-8
978-81-322-1602-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-1602-5_116

DOI

http://dx.doi.org/10.1007/978-81-322-1602-5_116

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042525822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Garima", 
        "id": "sg:person.010662703442.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jati", 
        "givenName": "Arindam", 
        "id": "sg:person.011524344647.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khasnobish", 
        "givenName": "Anwesha", 
        "id": "sg:person.01260452574.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "R", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1469-8986.3720163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001526920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.126.6.890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009857766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.126.6.890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009857766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11848035_70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015218489", 
          "https://doi.org/10.1007/11848035_70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11848035_70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015218489", 
          "https://doi.org/10.1007/11848035_70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/3/2/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027814393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030108965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108965", 
          "https://doi.org/10.1007/978-3-540-68609-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108965", 
          "https://doi.org/10.1007/978-3-540-68609-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1978.4309917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031276930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0028-3932(84)90008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034257502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-4388(92)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037472479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0959-4388(92)90011-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037472479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.954607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2003.817122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1334229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094104396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2009.5393891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094411467"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This paper proposes a scheme to utilize the unaltered direct outcome of brain\u2019s activity viz. EEG signals for emotion detection that is a prerequisite for the development of an emotionally intelligent system. The aim of this work is to classify the emotional states experimentally elicited in different subjects, by extracting their features for the alpha, beta, and theta frequency bands of the acquired EEG data using PSD, EMD, wavelet transforms, statistical parameters, and Hjorth parameters and then classifying the same using LSVM, LDA, and kNN as classifiers for the purpose of categorizing the elicited emotions into the emotional states of neutral, happy, sad, and disgust. The experimental results being a comparative analysis of the different classifier performances equip us with the best accurate means of emotion recognition from the EEG signals. For all the eight subjects, neutral emotional state is classified with an average classification accuracy of 81.65 %, highest among the other three emotions. The negative emotions including sad and disgust have better average classification accuracy of 76.20 and 74.96 % as opposed to the positive emotion i.e., happy emotional state, the average classification accuracy of which turns out to be 73.42 %.", 
    "editor": [
      {
        "familyName": "Babu", 
        "givenName": "B. V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagar", 
        "givenName": "Atulya", 
        "type": "Person"
      }, 
      {
        "familyName": "Deep", 
        "givenName": "Kusum", 
        "type": "Person"
      }, 
      {
        "familyName": "Pant", 
        "givenName": "Millie", 
        "type": "Person"
      }, 
      {
        "familyName": "Bansal", 
        "givenName": "Jagdish Chand", 
        "type": "Person"
      }, 
      {
        "familyName": "Ray", 
        "givenName": "Kanad", 
        "type": "Person"
      }, 
      {
        "familyName": "Gupta", 
        "givenName": "Umesh", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-1602-5_116", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-1601-8", 
        "978-81-322-1602-5"
      ], 
      "name": "Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012", 
      "type": "Book"
    }, 
    "name": "A Comparative Analysis of Emotion Recognition from Stimulated EEG Signals", 
    "pagination": "1109-1115", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-1602-5_116"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca91ae54a9f0bc0c459c53958e3d979b2c86df93b7cc1faa861cb0a214f67f81"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042525822"
        ]
      }
    ], 
    "publisher": {
      "location": "New Delhi", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-1602-5_116", 
      "https://app.dimensions.ai/details/publication/pub.1042525822"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-1602-5_116"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1602-5_116'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1602-5_116'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1602-5_116'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1602-5_116'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-1602-5_116 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N72350363a7974c35bc48f60aa911172d
4 schema:citation sg:pub.10.1007/11848035_70
5 sg:pub.10.1007/978-3-540-68609-5
6 https://app.dimensions.ai/details/publication/pub.1030108965
7 https://doi.org/10.1016/0028-3932(84)90008-3
8 https://doi.org/10.1016/0959-4388(92)90011-9
9 https://doi.org/10.1037/0033-2909.126.6.890
10 https://doi.org/10.1088/1741-2560/3/2/008
11 https://doi.org/10.1088/1741-2560/4/2/r01
12 https://doi.org/10.1109/34.954607
13 https://doi.org/10.1109/icpr.2004.1334229
14 https://doi.org/10.1109/jproc.2003.817122
15 https://doi.org/10.1109/nabic.2009.5393891
16 https://doi.org/10.1109/tsmc.1978.4309917
17 https://doi.org/10.1111/1469-8986.3720163
18 schema:datePublished 2014
19 schema:datePublishedReg 2014-01-01
20 schema:description This paper proposes a scheme to utilize the unaltered direct outcome of brain’s activity viz. EEG signals for emotion detection that is a prerequisite for the development of an emotionally intelligent system. The aim of this work is to classify the emotional states experimentally elicited in different subjects, by extracting their features for the alpha, beta, and theta frequency bands of the acquired EEG data using PSD, EMD, wavelet transforms, statistical parameters, and Hjorth parameters and then classifying the same using LSVM, LDA, and kNN as classifiers for the purpose of categorizing the elicited emotions into the emotional states of neutral, happy, sad, and disgust. The experimental results being a comparative analysis of the different classifier performances equip us with the best accurate means of emotion recognition from the EEG signals. For all the eight subjects, neutral emotional state is classified with an average classification accuracy of 81.65 %, highest among the other three emotions. The negative emotions including sad and disgust have better average classification accuracy of 76.20 and 74.96 % as opposed to the positive emotion i.e., happy emotional state, the average classification accuracy of which turns out to be 73.42 %.
21 schema:editor N243430c40af44083937a80b58b011be3
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nb34cb62212e94bfb9a5eb733c502db47
26 schema:name A Comparative Analysis of Emotion Recognition from Stimulated EEG Signals
27 schema:pagination 1109-1115
28 schema:productId N1deba5515be24f3c8c62bc7631fdcff7
29 N2f446f4ca02b4021b9f165887c083d12
30 N5ac70df0bad548639f0f2b80d501b480
31 schema:publisher Na9fc1307fbc8449490e0fd59cbcc3311
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042525822
33 https://doi.org/10.1007/978-81-322-1602-5_116
34 schema:sdDatePublished 2019-04-15T15:23
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N024d35c74be9491299c8a812cb109b07
37 schema:url http://link.springer.com/10.1007/978-81-322-1602-5_116
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N024d35c74be9491299c8a812cb109b07 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N09b13e84b2d444c7bb3d398d2809cb73 schema:familyName Bansal
44 schema:givenName Jagdish Chand
45 rdf:type schema:Person
46 N1deba5515be24f3c8c62bc7631fdcff7 schema:name dimensions_id
47 schema:value pub.1042525822
48 rdf:type schema:PropertyValue
49 N243430c40af44083937a80b58b011be3 rdf:first N5424e99a7a3f4621b7c5b0aec1d07aef
50 rdf:rest N34ed46d50cc342de89d63ca693bd370e
51 N2681aab5f4ec4295b36bc20dfd28af9c rdf:first sg:person.01260452574.41
52 rdf:rest N36c2f18d93424f7ab0ea10d75e879f18
53 N2c61efd03c504f73adbef39e25085024 rdf:first sg:person.010726132604.03
54 rdf:rest Ndbee29c5e4874248ac6f3da6c14e1502
55 N2f446f4ca02b4021b9f165887c083d12 schema:name doi
56 schema:value 10.1007/978-81-322-1602-5_116
57 rdf:type schema:PropertyValue
58 N34ed46d50cc342de89d63ca693bd370e rdf:first N84213f09c53540f1a01b9a61d0e74903
59 rdf:rest N7bde83007c144fe5bf66ed02ae217357
60 N36c2f18d93424f7ab0ea10d75e879f18 rdf:first sg:person.07421667055.72
61 rdf:rest Ncbacfb2fcb7144efa354b8fdc7d7145c
62 N5424e99a7a3f4621b7c5b0aec1d07aef schema:familyName Babu
63 schema:givenName B. V.
64 rdf:type schema:Person
65 N5ac70df0bad548639f0f2b80d501b480 schema:name readcube_id
66 schema:value ca91ae54a9f0bc0c459c53958e3d979b2c86df93b7cc1faa861cb0a214f67f81
67 rdf:type schema:PropertyValue
68 N69349fc38804426781dedd2a07731ae1 rdf:first N9c03814c51e04d0c99dd54b772daa61d
69 rdf:rest rdf:nil
70 N72350363a7974c35bc48f60aa911172d rdf:first sg:person.010662703442.33
71 rdf:rest Ne89f4eb7fae74c809110d42d65b5e72e
72 N77e7a0aba45f4ed2a0313a992a3788f9 rdf:first N7a05846ce7484421ae897b716bb69ff7
73 rdf:rest Nbb88d50af7cf4570a693ef4e185bf3cc
74 N7a05846ce7484421ae897b716bb69ff7 schema:familyName Pant
75 schema:givenName Millie
76 rdf:type schema:Person
77 N7bde83007c144fe5bf66ed02ae217357 rdf:first Ncf2f2f90503c4e2ea93d09eec10d238e
78 rdf:rest N77e7a0aba45f4ed2a0313a992a3788f9
79 N84213f09c53540f1a01b9a61d0e74903 schema:familyName Nagar
80 schema:givenName Atulya
81 rdf:type schema:Person
82 N9c03814c51e04d0c99dd54b772daa61d schema:familyName Gupta
83 schema:givenName Umesh
84 rdf:type schema:Person
85 Na9fc1307fbc8449490e0fd59cbcc3311 schema:location New Delhi
86 schema:name Springer India
87 rdf:type schema:Organisation
88 Nb34cb62212e94bfb9a5eb733c502db47 schema:isbn 978-81-322-1601-8
89 978-81-322-1602-5
90 schema:name Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012
91 rdf:type schema:Book
92 Nb7f5186db7c945f69438b4a17426b6f7 schema:familyName Ray
93 schema:givenName Kanad
94 rdf:type schema:Person
95 Nbb88d50af7cf4570a693ef4e185bf3cc rdf:first N09b13e84b2d444c7bb3d398d2809cb73
96 rdf:rest Nf2db45ac187447dc9500401cb018c78d
97 Ncbacfb2fcb7144efa354b8fdc7d7145c rdf:first sg:person.01337053064.29
98 rdf:rest N2c61efd03c504f73adbef39e25085024
99 Ncf2f2f90503c4e2ea93d09eec10d238e schema:familyName Deep
100 schema:givenName Kusum
101 rdf:type schema:Person
102 Ndbee29c5e4874248ac6f3da6c14e1502 rdf:first sg:person.013316247664.76
103 rdf:rest rdf:nil
104 Ne89f4eb7fae74c809110d42d65b5e72e rdf:first sg:person.011524344647.45
105 rdf:rest N2681aab5f4ec4295b36bc20dfd28af9c
106 Nf2db45ac187447dc9500401cb018c78d rdf:first Nb7f5186db7c945f69438b4a17426b6f7
107 rdf:rest N69349fc38804426781dedd2a07731ae1
108 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
109 schema:name Psychology and Cognitive Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
112 schema:name Psychology
113 rdf:type schema:DefinedTerm
114 sg:person.010662703442.33 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
115 schema:familyName Singh
116 schema:givenName Garima
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33
118 rdf:type schema:Person
119 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
120 schema:familyName Tibarewala
121 schema:givenName D. N
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
123 rdf:type schema:Person
124 sg:person.011524344647.45 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
125 schema:familyName Jati
126 schema:givenName Arindam
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45
128 rdf:type schema:Person
129 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
130 schema:familyName Khasnobish
131 schema:givenName Anwesha
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
133 rdf:type schema:Person
134 sg:person.013316247664.76 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
135 schema:familyName Janarthanan
136 schema:givenName R
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
138 rdf:type schema:Person
139 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
140 schema:familyName Konar
141 schema:givenName Amit
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
143 rdf:type schema:Person
144 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
145 schema:familyName Bhattacharyya
146 schema:givenName Saugat
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
148 rdf:type schema:Person
149 sg:pub.10.1007/11848035_70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015218489
150 https://doi.org/10.1007/11848035_70
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-540-68609-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030108965
153 https://doi.org/10.1007/978-3-540-68609-5
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1030108965 schema:CreativeWork
156 https://doi.org/10.1016/0028-3932(84)90008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034257502
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0959-4388(92)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037472479
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1037/0033-2909.126.6.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009857766
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/1741-2560/3/2/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027814393
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/34.954607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157321
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/icpr.2004.1334229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094104396
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/jproc.2003.817122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296150
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/nabic.2009.5393891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094411467
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tsmc.1978.4309917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031276930
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/1469-8986.3720163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526920
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
179 schema:name Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
180 School of Bioscience and Engineering, Jadavpur University, Kolkata, India
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...